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Abstract-The structure of a scalar field (temperature or concentration of some passive admixture) in 
moving-equilibrium boundary layers with longitudinal pressure gradients is studied by the dimensional 
analysis and asymptotic expansion method. It follows from the analysis that a self-similar region named 
the ‘gradient sublayer’ (where the mean temperature distribution is described by the inverse half-power 
law) exists in both decelerating and accelerating pressure-gradient wall flows. Moreover, the temperature 
defect law of special form is valid in the outer zone of strong gradient boundary layers. The available 
experimental data on temperature profiles in decelerating wall flows permit one to determine universal 
constants and functions entering into the theoretical relationships and to obtain interpolation formulae 
describing the mean temperature field under such conditions. Assuming that an overlap layer exists, where 
both the defect law and gradient-sublayer law are valid, one can obtain the universal heat and mass transfer 
law. The numerical coefficients of this law are estimated for decelerating pressure-gradient flows. The 
forms of some statistical characteristics of temperature fluctuations (in particular, the multidimensional 
probability density, spectra and moments) in the gradient sublayer are found by dimensional analysis and 

compared with the available experimental data. 

1. INTRODUCTION 

UNLIKE the study of the dynamic structure of press- 
ure-gradient turbulent flows that have evoked a 
fairly large number of contributions, the study of heat 
and mass transfer in such flows has received relatively 
little attention despite the great engineering import- 
ance of these processes. This is mainly explained by 
great experimental difficulties encountered in the 
study of heat and mass transfer. It is clear that the 
longitudinal pressure gradient introduces an 
additional complexity into the experimental inves- 
tigation of the mean temperature field and of its tur- 
bulent fluctuations. Therefore, it is no surprise that 
the available literature contains very few experimental 
results suitable for verifying the conclusions presented 
below. Note also that almost all these results relate to 
heat transfer in air flows which are characterized by 
a nearly constant Prandtl number (PY E 0.7). 

The lack of necessary experimental data also 
explains the meagreness of theoretical works dealing 
with the temperature or concentration field in a press- 
ure-gradient turbulent flow. Here, among the most 
important works are the papers by Perry et al. [l], 

who, using dimensional considerations, obtained ‘the 
inverse square root law’ for the mean temperature 
profile in a zone of pressure-gradient boundary layer, 
and by Afzal[2], where the method of matched asymp- 
totic expansions was applied to derive the same law. 
Both these papers used the same experimental data 
from ref. [I] related to the air boundary layer on a 
plate ; therefore, the possible effect of Prandtl number 
on the temperature profile and heat transfer law were 
not tackled in these studies. 

In the present paper the general analysis of the 
problem of heat and mass transfer in pressure-gradi- 
ent wall flows will be given. It will be assumed that 
PY 2 0.7. This means that the case of heat transfer in 
liquid metals, where PY CC 1, will not be considered 
here (since there are no experimental data to verify 
the theoretical conclusions related to such a transfer). 

Only the two-dimensional turbulent flow of an 
incompressible fluid will be considered below, and 
it will be assumed that the substance transferred is 
dynamically passive, i.e. it does not influence the vel- 
ocity field. Moreover, it will be supposed that for 
both the velocity field U and the temperature (or 
concentration) field T the hypothesis about the mov- 
ing equilibrium is satisfied with an adequate accuracy. 
This hypothesis states that, at a given value of the 
longitudinal coordinate x, all characteristics of these 
fields depend only on the values of the external flow 
parameters at the same value of x (see ref. [3] dealing 
with the mean velocity field and friction law for press- 
ure-gradient flows). It should be noted at the outset 
that the validity of this hypothesis for the velocity 
field does not automatically entail the same for the 
temperature and concentration fields. Therefore, the 
condition U,/($) ‘/’ >> 1 (where U,, is the velocity at 
the outer edge of the boundary layer of thickness 6, 
y = p- ’ ]dP/dx] the kinematic pressure gradient, and 
p the density), which was stated in ref. [3] as the 
approximate condition guaranteeing the validity of 
the moving-equilibrium hypothesis for the mean vel- 
ocity field, is a necessary one but not sufficient for the 
flows studied in this paper. Indeed, certain restrictions 
should also be imposed on the boundary conditions 
for the T field; in particular, a very sharp variation 
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NOMENCLATURE 

(1 thermal dilfusivity 

l’, universal constants 

(‘1, specific heat at constant pressure 

(‘I skin friction coefficient 

L,,. be,,, tcmperaturc spectrum and 
tcmpcrature and velocity cospectra 

FL Hatness factor of tcmpcrature fluctuations 
H thickness of thermal boundary Iayc~ 

k’, universal constants 

h wave numbct- 
“L’ temperature dissipation 

PC, probability density of temperature 

fluctuation distribution 
dP’d.\- longitudinal pressure gradient 

:I’ 
11 

R, 
I’ 

.c 
s,, 
.Sf 
T 

‘* 
I’ 

thermal or diffusion Prandtl number 
tcmpcrature flux 
heat flux 

longitudinal correlation functions 
argument of longitudinal correlation 

functions 
(i,, ‘(5, = U; ;;7 

asymmetry of temperature fluctuations 
Stanton numhct 

mean temperature 
friction temperature, Q/U, 

mean longitudinal velocity 
II. 1. II‘ longitudinal, normal to the wall and 

trimsvcrsc velocity fluctuations. 
rcspectiv#cly 

Ld* friction velocity 

.\-. 1‘ . : longitudinal, vertical and transverse 

coordinates. rcspectivcly 

,I’ / . ,. ‘7 dimensionless vertical coordinates, 

I’. 6 ( . ,~,‘d,. I‘> (5 

Greek symbols 
universal constants 

;/W f unction of Pr cntcring into equation 

(Xn) 

I-,, function in equation (14) 

kinematic pressure gradient. 

I~ ’ ]dP/d.u] 
il thickness of molecular heat transfet 

suhlaycr 

ii,. ii,, Kolmogorov and temperature 
microscales of turbulence 

,‘i, . ii,, , h,, viscosity. heat transfer and 
pressure-gradient length scales. 
respcctivcly, r/!1,, (I/u*. u*.'j, 

':ll coefficient of eddy diffusion of 
heat 

0 temperature fluctuations 

/’ density 
i time 

(i1 . IO, universal functions. 

Subscripts 
0 temperature field 

f dimensionless quantities 
0 conditions at the outer edge of the 

boundary layer 

P pressure-gradient quantities 

w wall. 

Superscripts 
0 refers to temperature held 

P gradient quantities. 

of the wall tcmpcraturc T, will make the structure 01 
the temperature held dependent on dT,,,/d.u. i.c. it will 
lead to the inapplicability of the moving-equilibrium 
hypothesis for the tcmperaturc field even in the con- 
stant-pressure case. 

2. MEAN TEMPERATURE PROFILE AND HEAT 

TRANSFER IN PRESSURE-GRADIENT 

FLOWS 

Since there are no’experimental data on mass trans- 
fer in pressure-gradient boundary layers. only heat 
transfer will be discussed below. bearing in mind, how- 
cvcr. that the results can also be applied to mass 
transfer after evident change of notation. 

In addition to dimensional parameters that were 
listed in ref. [3] as relevant for the description of the 
kinematic characteristics of the moving-equilibrium 
pressure-gradient boundary layer (i.e. the parameters 

;I. (5, the kinematic viscosity cocfhcient V, and the fric- 
tion velocity u,). it is now necessary to add the tcm- 
pcraturc flux Q = q,;(,,,p (where y, is the wall heat 
flux and ‘;, the heat capacity) or ‘friction temperature 
I, = Q’ll,, as well as the thermal boundary layer 
thickness II and thermal diffusivity (I = vi/+. 

An attempt will be made to determine, at least 
roughly, what conditions guarantee the applicability 
of the moving-equilibrium hypothesis to the mean 
temperature field in a pressure-gradient flow. For sim- 
plicity, only the effect of the longitudinal prcssurc 
gradtent on the thermal boundary layer will be con- 
sidered which develops on the plate under the con- 
ditions where the variations of all the parameters 
different from P along the coordinate x are negligible. 
The characteristic time z, of the longitudinal variation 
in the velocity UC, of the incident Aow, which entails 
the variation in the structure of both the dynamic and 
thermal boundary layers with X, is equal to 
]dU’d.ul ’ = Cr,,:y. The tcmperaturc relaxation time 



z, is determined by the quantities Q, El, u* and by the 
tem~rature difference T, - To between the wall and 
the incident flow. Therefore, r, N QH/uf(Tw - To). 
Since the dimensionless intensity of heat transfer-the 
Stanton number-is defined as St = Q/U,(T, - To) 
while (u,/tJ,)’ = ~$2, it is obtained that 

(cf. schematic (Fig. 1)). The validity of the above in- 
equalities means that the turbulent boundary layer is 
developed dynamically and thermally so that Re, = 
s/s, = &4,/v >> 1 and Pe, = H/S, = Hu,la >> 1. 
Then it can be expected that the flow is self-similar 
with respect to Re, and Pe, and the argument 
Su,/v in equation (3) can be replaced by infinity, 

St H 

zr - c,iz -u,. 
i.e. can be ignored. 

Now simplifications of equations (3) will be con- 
sidered which can be used in some special zones of the 
turbulent boundary layer. But the validity of the inequality rr << z, is clearly 

necessary for the applicability of the moving-equi- 
librium hypothesis to the temperature field. Hence the 
condition 

When 0 << y << 6, (and, therefore, also when 
y << min (6, H)) the scales 6,, 6, and H should not 
affect the structure of the thermal boundary layer and, 

is necessary for the possibility to use the moving- 
equilibrium approximation in this paper. In the case 
of a sharp change in the wall boundary conditions 
(when the derivatives dT,/dx or dq,/dx can no longer 
be regarded as small), it is necessary to check whether 
the logarithmic derivatives satisfy the inequalities 

+I2 u: 
consequently, the temperature profile is described here 

-- 
St yH 

>> 1 (1) by the ordinary law of the wall 

G@Y = (Q/W?“ot+ + W, T+ (~9 = #?“(Y+~ f’rh 

T+ (~1 = [Tw - WW*> Y+ = vi& = YU,/V (4) 

which follows from the first line of equation (3) when 
S = &r/6, = r&v -+ co and when the dependence on 
6/H is neglected. In the zone of the validity of equation 
(4), the longitudinal pressure gradient, just as the flow 
type, exerts no effect on the flow, i.e. here the tem- 
perature profile is the same as that in constant-press- 
ure flows. In the case of large pressure gradients, 
when the ratio S = S,/6, or 6,/& = S* Pr is not very 
large any longer, the quantity S enters into the list of 
wall law arguments, so that 

db VW - TJI << 1 or d(ln Q) << l. 
__- 

d txlff) WlH) (2) 

Under conditions (1) and (2), it is possible to assume 
that the temperature profile of the pressure-gradient 
wall flow is determined by the values of five length 
scales: the thicknesses of the viscous and molecular 
heat transfer 6, = v/u, and 6,, = a/u,, the pressure- 
gradient length scale 6, = z&r, the thicknesses of the 
dynamic and thermal boundary layers 6, and H. Thus, 
it follows from the dimensional analysis that the tem- 
perature profile is described by the function of five 
dimensionless arguments and can be represented by 
three equivalent expressions 

Determination of the form of these functions from 
experimental data seems to be unreal. However, the 
above formulae can be substantially simplified in spe- 
cial Row zones where some arguments of the functions 
$p take on very large or very small values. Assuming 
that the corresponding limits exist, one can simply 
replace, in the first approximation, the small argument 
by zero and the large by infinity. First, consideration 
will be given to the gradient flow with length scales 
satisfying the conditions 

aT/ay = (QY~~J~‘~P)K a (54 

If the longitudinal pressure gradient is so large that 
6, is of the same order of magnitude as max (a.,, 6,) 
(but the condition Z >> 1 is also fulfilled by virtue of 
the requirement that the turbulence must be 
developed), then for y c min (6, H) 

max (&, 8,) CC 6, <CC min (6, H) 

aV% = (QY/~~)~~‘(~, S, Pr). (5b) 

In the outer region of the boundary layer where 
Y >> a:/~ and y >> max (a,, 6,) the temperature defect 
law must be valid 
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aTjaY = (Q/v)~~P)(~+, S, pr), 

T, (Y) = #@‘(y+, S, pd. W 

The quantities v, a, 6, H are not important within 
the range of y values satisfying the inequalities 
max (6,, 6,) CC y CC min (6, H) (see again Fig. 1). 
Hence here the gradient law of the following form is 
vahd : 

aT/ay = (QY/‘u:)@“(~)> i; = y/h, = YV/U:. (5) 

Note that the function I&‘) must be the same for 
different types of flow (for the boundary layer on a 
plate, diverging or converging ducts of any cross- 
section and so on). However, for not very large values 
of Z = 6/6, = y&/u& this argument must also be pre- 
served in the second line of equation (3) and therefore 
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Bh=a/u*8”=Y/u* CC 8, =0,2/7 << 8 H 

. . v . , 

OSY~U,2/~ lI:/T<<YSH 

Temperature WON law Temperature defect low 
1 ‘, L 

~V,O,U*,Ol max (%h, 8, ) <<y CC ml” (8.H) [r,H.&QI 

Pressure -gradient law 

[%7.01 
mox l8,,8,) ~yCu,2/7 

u:/yeyemin (8,H) 

Logarithmic 
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;y_jfY j 

7, 

FE. 1. The scheme of the validity range of similarity laws for the temperature field in the developed 
turbulent boundary layer with a longitudinal pressure gradient. The dimensional parameters of the problem 

which define the flow in the region under consideration are indicated in square brackets. 

This law follows from the dimensionality arguments 
and from the assumption about the existence of 

where I,@” is the function entering into the third line 
of equation (3). Thus, as it is noted in Fig. 1, in this 
region the friction velocity U, falls out of the list of 

relevant dimensional parameters. This falling out is 
due to the condition y$/u: >> 1 which determines the 
outer zone of the thermal boundary layer. It is clear 
that the condition _r;~/ui --t CC is equivalent to u.+ + 0. 

At the same time, the temperature flux Q, which is 
also related to the boundary conditions on the wall, 
keeps affecting the temperature profile in this flow 
region. The reasons given above also imply the con- 

clusion that the physical properties of the Auid have 
no effect on the profile T(y) in the flow zone con- 

sidered. but this profile can depend on the type of flow. 
In the case of weak pressure-gradient flows it can 

be expected that the temperature defect law includes 
the function of three arguments 

It seems clear, at first sight. that in the case when 
the dynamic and thermal botindary layers start at the 
same point x = 0, the ratio 6/H must take a constant 
(and, besides, fairiy close to unity) value, so that the 
argument b/H can be simply discarded in all the pre- 
vious formulae. This question, however, needs a more 
detailed consideration, which is given in Appendix A. 
It is explained there that it is reasonable to use the 
definition of the thickness H which eliminates the 
effect of the molecular transfer sublayer on H. Such a 
definition leads to the equations 

7‘+(H) = 0.99T,, +O.Ol[j(Pr). 

fi(Pr) = (3.85Pr”’ -1.3)L+2.121nPr (7) 

which determine the value of H, and for this H the 

assumption made above turns out to be valid, i.e. the 
ratio S/H actually becomes constant for constant- 
pressure flows. 

The situation is much more complex for flows with 
strong pressure gradients. Here the hydrodynamic 
structure of the outer part of the boundary layer 
becomes independent at all of the magnitudes of the 
wall momentum flux (i.e. of friction velocity) and is 

determined by the longitudinal pressure gradient 
alone, while the temperature profile in this zone is 
kept substantially dependent on the wall heat flux Q. 

Obviously, the strong turbulent mixing in the outer 
zone of the decelerating turbulent boundary layer con- 
siderably decreases the variation of the temperature 
profile with y in this region and hence also decreases 
the thickness H, whereas strong negative pressure 

gradients suppress the turbulent mixing in this region 
of the boundary layer and hence produce the strong 
dependence of T(y) on y and the increase of H. 

The formulae given above for the temperature pro- 
file in different zones of the pressure-gradient bound- 
ary layer are much simpler than general equations (3). 
but they also contain some unknown functions of 
several variables which must be found either from 
experimenml data or from some approximate semi- 
empirical theories. More definite conclusions can be 
obtained assuming that there exist overlapping 
regions of the asymptotic expansions stated above, 
where two different asymptotic representations of the 
temperature field are simuitaneously valid. Thus. 
assuming that there exists the zone, max (6,, 6,,) CC 

y <c 6,, of matching the wall and gradient laws, it is 
easy to find that 

(yu,/Q)cTT/d.~ = y+$?“(y+, Pr) 

= &/df)(<) = --a = const. (8) 

Therefore, the temperature profile is described in 

this zone by the logarithmic equations 

T, (_v) = r in y, + B(Pr) (Xa) 
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T+(y) = ctln C+fi,(Pr,S), #I* = P(Pr)+a In S. 
(8b) 

The values of the universal constant CI and of the 
function fl(Pr) (which is determined by the tem- 
perature difference between the wall and the lower 
edge of the logarithmic sublayer) must not differ from 
the corresponding values in constant-pressure flows. 
Hence, according to ref. [4], tl = 2.12, whereas the 
function p(Pr) is given by equation (‘7). Thus, the 
logarithmic law of the temperature distribution 
appears to be valid in a certain region of distances 
from the wall also in the pressure-gradient non-iso- 
thermal flows with not too strong pressure gradients. 

Equation (4) which for y, 6 4Pr- ‘/3 has the linear 
form T+(y) = Pry+ and for y, >> 1 has logarithmic 
asymptotic @a), can be approximated by a single 
interpolating formula, e.g. by the formula suggested 
in ref. [S], namely : 

T+(Y) = Pry+ exp l-G) 

+[2.12ln(l+y,)+/3(Pr)lexp(-l/G) 

where G = IO-‘(Pr ~+)~/(l +5Pr3 y,). 
In the zone of the overlapping of the gradient law, 

equation (5), and the temperature defect law, equation 
(6), where u:/v << y CC min (S, H), the following equa- 
tion must hold : 

(y”‘y”‘/Q)aT/ay = 53’21@(5) = rf3’*l+@‘(q) 

= - (1/2)K\B) = const. (9) 

where the factor - l/2 is included for the convenience 
of subsequent integration. Thus, the matching of both 
these laws yields the formulae 

[Tw - T(y)]/& = -K{@/,/5+ K$@(S, Pr) (9a) 

[T(y) - TJQ(yH) - “’ = K(f)/ Jq + KY’ (9b) 

which can naturally be called the ‘inverse hall power 
law’. 

Law (9a) was apparently first formulated in ref. [I] 
but there K(F), just as u in equation (S), was regarded 
to be dependent on the physical properties of the fluid 
(that is on Pr). Reference [l] also contains some 
experimental data on temperature profiles in the press- 
ure-gradient non-isothermal air flow above a plate 
that confirmed the existence of a sublayer in which 
the temperature distribution obeyed relations (9). 
Based on these data, the authors recommended to 
take K(f) to be equal to 2.8 for any values of the 
adverse pressure gradient at Pr = 0.7. Afterwards this 
‘elegant’ law was pretty well forgotten and, within 
the knowledge of the present author, it has not been 
discussed and used in the subsequent literature 
devoted to heat transfer in pressure-gradient flows, 
until ref. [2] appeared where equation (9a) was 
deduced by the asymptotic expansion method. 

2.2. Analysis of experimental results 
To verify the inverse half-power law, use will be 

made of the experimental data given in ref. [6]. Besides 
the convenience of processing these data (all exper- 
imental results are presented in the form of detailed 
tables), the data are also attractive since they provide 
the possibility of independent verification of the 
relations given above (note that the law under dis- 
cussion is not mentioned in ref. [6]). In Figs. 2 and 3 
these experimental data on temperature distribution 
in the equilibrium (in the sense that the dimensionless 
longitudinal pressure gradient (2v/Uz) dU,/dx re- 
mains constant along the plate) accelerating and 
decelerating flows are given as T+ = [Tw - T(y)]/t, vs 

(YYid) - ‘/2, i.e. in such a form that the law being 
verified is represented by a simple linear relation. For 
convenience, the thicknesses of the molecular sublayer 
(y/S, = Pry+ E y+ = 30) and of the near-wall zone 
of the boundary layer (y/6 = 0.1) are also shown in 
the figures by dashed lines. The figures confirm the 
above theoretical reasonings by indicating that the 
inverse half-power law for the temperature profile is 
valid over a considerable portion, not only of the 
decelerating but also, the accelerating turbulent layer 
within a wide range of regime parameters. At the same 
time, the experimental data analysed do not agree well 
with the hypothesis about the constant value of K(f) 
independent of the magnitude of the longitudinal 
pressure gradient. Therefore, following the method 
suggested in ref. [3], use will be made here of a more 
general (than equation (9)) relation 

[TW - T(y)]/& = -K\@(Z)/&+ K$@(Z, S, Pr) 

(9c) 

[T(Y) - Tol/Q(rW “’ = K?(Z)/& + K’38’V) 

where K(F) varies with Z for not too large values of 
Z. 

The main difficulty of such an analysis is the 
insufficiency of the available empirical material 
summed up, for convenience, in Table 1. This pertains 
especially to accelerating flows. The data available for 
these flows make an impression that the main purpose 
of the authors of experimental works was to study 
the limiting case of the turbulent boundary layer 
relaminarization disregarding the case of moderate 
negative pressure gradients. Therefore, consideration 
will be given to the behaviour of K(F)(Z) only for 
decelerating boundary layers with a decrease in heat 
transfer. 

First, an attempt will be made to evaluate the 
asymptotic behaviour of this function at small values 
of Z from the requirement of a smooth (up to the first 
derivative) matching of the logarithmic law, equation 
@a), and inverse half-power law, equation (9a), at a 
certain point y = y,. Naturally, this requirement is 
based on the assumption that the sublayer dividing 
the boundary layer regions, for which the two laws 
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FIG. 2. Verification of the fulfillment of the inverse half-power law for the temperature profile in the wall 
zone of a decelerated boundary layer (according to the data of ref. IS]). 
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FIG. 3. Verification of the fulfillment of the inverse half-power law for the temperature profile in the wall 
zone of an accelerating boundary layer (according to the data of ref. [6]). 

are valid, is very thin: therefore the results thus 
obtained arc only approximate (however, it seems 
natural to hope that their accuracy will suficc for 

practical applications). Based on the assumption 

adopted, the conclusion can be drawn that 
k”(Y) = 2?4t’,/&)‘,‘Z’ 2 when Z CC I. But since the 
lower limit of the validity zone for this law must not 
differ greatly from the upper limit of the logarithmic 
sublayer, where equation (8) is apparently valid, 
J’, 2 0.15ii. Hence. taking x = 2.12, it is easy to obtain 

that 

K’:’ r 1.5%” when Z K I. (10) 

On the other hand, the aforegoing dimensionai con- 
siderations imply that in strongly gradient flows (for 
Z >> 1) the function FCC:” must tend to the u~iversa1 
constant dependent neither on the flow type. nor on 

physical properties of the fluid. Unfortunately, at pre- 
sent there are no experimental data which allow a 
complete veri~cation of the latter theoretical pre- 

diction-all the experinlents collected in Table I relate 
to air tiows with Pr z 0.7. Nevertheless the available 
data cover a fairly wide range of Z values (namely, 
1.5 6 Z < 50) which makes it possible to check the 
character of the dependence of K’/‘(Z) on Z. 

The data in Fig. 4 are rather scattered but on the 
whole they show that for the decelerating flows 

KC:’ 2 3 for Z >> 1. (11) 

Moreover, the K’F’ values appear to be close to the 
limiting value already at the values of Z = :!n,u: 
slightly above 10, while, according to the experjmental 
results analyzed in ref. [3], a similar limit for the 
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Table 1. Summary table of experimental studies of the temperature field in two-dimensional decelerating and accelerating 
turbulent boundary layers on a plate 

Characteristics of the boundary layer 

No. Notation Reference dP/dx s = s,/s, = u:/yv z = s/s, = ysju: Notes 

I 2 3 4 5 6 7 

0 VI >o 10632 
161 ~0 266215 

e: >o >o,<o,>o 403-123 39248 

q >o,<o,>o 2W-48 

[19] 40 73-31 
v ]71 >O 38-31 

[39] 10 8863 12-13.8 
VII 10.20 32-836 0.7-14.8 

10.7-36 
2.3-5.0 
2.2-13.9 
1.421 

2.3-14.7 

8-14 
4548 

A2 experiment 
A3 experiment 
A part of A5 experiment for 
dP/dx > 0 
A part of A6 experiment for 
dP/dx > 0 
Flow relaminarization 
Points of origination of 
hydrodynamic and thermal boundary 
layers do not coincide 
Flow relaminarization 
For the part of experimental data 
with dP/dx > 0 succeeding the strong 
gradient, which, apparently, causes 
flow relaminarization 

I t I I I I I I 
loo 2 4 6 f3 10’ 2 4 6 

Z 

FIG. 4. The coefficient K(F) vs the parameter Z in the law (SC) and (9d) by the data of measurements for 
decelerated boundary layers. See notation in Table 1. The solid line corresponds to interpolation equation 

(12) and the dashed lines correspond to limiting relations (10) and (11). 

function K, (Z) in the half-power law for the velocity 

profile is only reached when Z 3 100. 
Based on the limiting relations (10) and (1 l), the 

following interpolating formula can be given 

Kc;’ = 3/&l +4/Z). (P) 

This formula agrees rather well with all experimental 
points in Fig. 4 and has correct asymptotic behaviour 
at large and small values of Z. 

The value K(f) = 2.8, constant at all values of Z, 
was suggested in ref. [l] on the basis of the experiment 
performed and also in ref. [2] where the same exper- 
imental data were analysed. This value agrees well 
with the experimental results in Fig. 4 for Z > 10 but 
differs appreciably (almost by a factor of two) from 
the experimental points for low values of Z. 

The same experimental data on the temperature 
profiles in decelerating turbulent wall flows allow one 
to estimate the additive function in equation (9a). For 
this it is sufficient, for instance, to plot the exper- 
imental data in the coordinates T+, (p/u:)- ‘12, as it 

was done in determining K(f) in Figs. 2 and 3, and to 
calculate the mean value of the sum T, + K$)[- “* 
(where Kc,@(Z) is determined from equation (12)) for 
all the points within the validity range of the inverse 
half-power law. It is clear that the thus obtained KIH) 
value corresponds to the segment cut off on the T, 
axis by the straight line drawn through the exper- 

imental point with the slope determined by relation 

(12). 
For a rough theoretical estimation of the form of 

the function K’,H’(S, Z, Pr) use will be made again of 
the simplest assumption about a smooth matching of 
the temperature profiles in the logarithmic sublayer 
and in the validity range of relation (9c) at 4’ = ~1~. 
This yields 

y2/S = (K’,@/2~)‘/Z 

and KY) E a In IH + j(Pr) + 2a (13) 

so that in this approximation K$” appears to be depen- 
dent only on the Prandtl number and on the following 
special combination of S and Z : 
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FIG. 5. The coefficient K’:” vs the values of the parameter 
r,, in law (SC). The solid line corresponds to interpolation 
equation (18) and the dashed lines correspond to limiting 

relations (17). 

It should be noted that F,, + S/2 when Z + x. Thus, 

in this case K(?B’ ceases to depend on Z and, in accord- 
ance with equation (9a), it is determined by the values 
of Pr and S. Besides, it follows from equation (13) 
that 

K~‘~alnS+~(Pr)+(2+ln2)c( for Z>> 1. 

(15) 

Equation (13) can be employed to estimate the func- 
tion K’;) only in the case of large S, when there exists 
(see Fig. 1) a noticeable layer characterized by the 
logarithmic temperature distribution. At insufficiently 
large values of S such a layer can be absent; at small 
values of S one already observes the matching of 
the temperature profile described by the inverse half- 

power law with the linear distribution T, = Pry+ of 
the mean temperature in the molecular heat condition 

layer. In this case 

_rJf!j g (K(;‘S/2PV)?~‘Z~ ’ 

and KY’ = 3(cr Pr F,)’ ‘. (16) 

Thus, it can be concluded that 

K(2H) 

{ 

2.12lnl,+/?(Pr)+const. whenr, >> 1 
= 5prlj3 r,f3 when Fc, >> 1’ (17) 

The experimental data that were obtained for the 

dependence of KY) on Ts for turbulent wall air flows 
(Pr r 0.7) by the above method are compared with 
the limiting relations in Fig. 5. The first of the limiting 
relations (17) agrees well with the experimental results 
for FH > 30, if the additive constant in it is taken to 
be equal to 4 (it will be recalled that, according to 

KALEK 

2 4 6 8 lo= 2 4 6 

S 

FIG. 6. The coefficient KY’ vs the parameter S in law (9~). 
The dashed line corresponds to the power law approximation 
of #l(S) for near separation flows. For notation see 

Table 1. 

equation (7), j(0.7) = 3.8). Note that this value agrees 
surprisingly well with the rough estimate of this con- 
stant which follows from equations (13), namely 
2a 2 4. The experimental data pertaining to the val- 
idity range of the second limiting relation (17) are not 
available in the literature, but, as can be seen from 

Fig. 5, when FU < 30, the experimental points begin 
to depart appreciably downwards from the dashed 
curve which corresponds to a logarithmic relation (13). 

A comparatively good approximation of the entire 
experimental material available is given by the inter- 
polating formula 

KY) = 5(Pr r 0 )I” exp (-Pr r ) 0 

+(2.121nr0+fi(Pr)+4)exp(-l,i(Prr,)) (18) 

which agrees with both equations (17). 
It is useful to compare the relations derived with 

the formulae suggested for KY’ in refs. [ 1, 21. It was 
assumed in both these papers that KY’ depends only 
on S. As it was illustrated above, this is true only 
at rather large values of Z. The experimental data 
available in the literature are presented in the form of 
the values of K\@(S) in Fig. 6. In this figure the power- 
law approximation K(2U) = c* S’/’ (suggested in ref. 
[l]) for the values of KY) at large values of Z is also 
pltrtted for c = 3.6 which is the value of c given in ref. 
[2]. Of course, this approximation agrees fairly well 
with the above-indicated rather old experimental 
results. but deviates markedly from the experimental 
points corresponding to large values of S (i.e. to the 
cases of moderate pressure gradients). Logarithmic 
equation (15) appears to be more successful, when the 
value of the constant term added to /3(Pr) is taken to 
be equal to 1.6 in lieu of the estimated value 
(2 -In 2)5( z 2.8. However, even in this case the scat- 
ter of the experimental points round the approxi- 
mating curve is somewhat higher than that in Fig. 
5. The authors of ref. [l] also preferred to use the 
logarithmic relation of form (15) for K(2H). but with 
different coefficients : K(28) = 2.0 In Ss4.9. 

For a complete description of the temperature pro- 
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file in the decelerated turbulent boundary layers it is 
also necessary to use the temperature defect law for 
the profile in the outer zone of the boundary layer. 
The analysis of the data related to this law will be 
given below only for the case when the difference 
between the thickness of the hydrodynamic and ther- 
mal boundary layers is not significant. With the excep- 
tion of the results given in ref. [7], all experimental 
data on heat transfer in decelerating flows collected 
in Table 1 satisfy this condition. According to the 
above results (see equations (6) and (6a)), if 
6/H = const. = 1, then for moderate values of 2 

or 
(T- ~J/QW- I” = &“(rl, Z) (19) 

(T-z-,)/t* = z-“‘@(V,Z). (19a) 

At the same time, at small values of Z the function 
d(3P) on the right-hand side of equation (19a) must be 
representable as Z”* *d4(~) where 44 does not 
depend on Z, since only under this condition equation 
(19a) for Z + 0 yields the known relation 

G- TcJlt* = 44(V) (20) 

which must be valid for constant-pressure flows. 
Based on the analogy with the velocity profile in 

the outer zone of a constant-pressure boundary layer, 
which can be rather accurately described by the Coles 
wake law [8], it seems reasonable to try to apply a 
similar law also to the temperature profile in this flow 
region. This attempt is based on the conclusion that 
the temperature distribution here does not depend 
on the value of the molecular Prandtl number. To 
approximate the wake function w(q), use will be made 
of the Moses polynomial w(q) = 6q2-4q3 (see, for 
instance, ref. [9]). The resulting formula 

(T--,)/t, = -2.12 In ~+0.75(2-6$+4q3) 

(21) 

(see also ref. [lo]) is compared with the experimental 
data in Fig. 7 which shows that it agrees satisfactorily 
with the data. 

In the other limiting case of large values of Z it 
is also possible to try to describe the temperature 
distribution in the outer zone of the pressure-gradient 
boundary layer with the aid of the Coles wake law 
with the wake function represented by the Moses poly- 
nomial. Here the wake function describes the devi- 
ation of the temperature profile from that given by the 
inverse half-power law rather than by the logarithmic 
law (as it is in the case of the constant-pressure flow). 
Therefore, here equation (19) takes the form 

(T- r,)/Q(yS)- “* = 3(~- I’* - 1) 

+A(2-6q2+4q3). (22) 

The value of the constant A in this formula can be 
determined by comparing equation (22) with the 
experimental data from ref. [1] for Z 2 20 presented 

h? 6 

Q %? 
‘I iZ 6 

4 

0 
6 6 10‘2 2 4 6610-’ 2 4 68 

r) =y/ff 

FIG. 7. The defect law for the temperature profile in the outer 
zone of a constant-pressure turbulent boundary layer on a 
plate. The solid line corresponds to equation (21) and the 
dashed line corresponds to the logarithmic asymptotics of 
the defect law. 1, 2, 3, refs. [19, 40, 411, for Pr = 0.7, 5 and 

50, respectively; 4, ref. [18], Pr = 0.7. 

in Fig. 8. A good approximation of these data by 
equation (22) is attained for A = 3.5. 

It is also easy to set up the interpolating relation 

T- To 2.12 -= -__ 
r * l+Z 

+ 15+3.5Jz 
20+z w++4f13) (23) 

which has a correct asymptotic behaviour and agrees 
with all the results given above. 

In conclusion, a list of formulae will be presented 
which permit one to calculate the temperature profile 
in decelerating turbulent boundary layers within a 
wide range of operational parameters and physical 
properties of the liquid, but which have been verified 
only for one value Pr 2 0.7 : 

0 
0 f?e"xlo-6 

Ia 0.79 
40 v 0.97 

0 1.21 
. 1.76 
•I 2.04 

30 .2.26 

10 

0 
6 6 1O-2 2 4 6 6 10-l 2 4 6 8 

, 
30 

FIG. 8. The defect law for the temperature profile in turbulent 
boundary layers with a strong adverse pressure gradient. The 
solid line corresponds to the defect law, equation (22), at 
A = 3.5 and the dashed line corresponds to its asymptotics 

(to the inverse half-power law). 
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FIG. 9. Comparison of the measured (dots) and calculated (solid lines) temperature prolilcs on the bass 

of the data of ref. [I]. 

Pry+exp(-G)+[2.12ln(l+~~,) 

+B(Pr)Iexp(-l/G) 

for 0 < )I_ < ~,u*/v (24a) 

_ K’:‘/;‘< + K$‘) 

for .,‘,;ljuS < 5 < ~‘~y/ui (24b) 

15+3.5j% - 20+7- (2-6$+4$) 
I 

0 

FIG. IO. Comparison of the measured (dots) and calculated 
(solid lines) temperature profiles based on the data of ref 

b]. 
Here G = 10 ‘(Pr y+)‘/(l-5Pr1 y+), /I(Pr) = (3.85 

x Pr’ ‘-1.3)‘+2.12lnPr, (T,-T,)jt, = (c,/2)“‘/St, 

whereas K’:” and KY’ are given by equations (12) 

and (IQ, with J’, being the ordinate of the inter- 
section point of the wall law. equation (24a), and 
the inverse half-power law, equation (24b), and yz 
of laws (24b) and (24~). If the intersection points 
determining the values of JJ, and J’> do not exist 

or ,v, > J2. then the value of J’,’ is calculated, 
which corresponds to the intersection of the wall 
law (24a) with the temperature defect law (24c), 
and the temperature profile is approximated by the 
combination of these two relations. 

Comparison of these formulae with the exper- 
imental data from rcfs. [I, 61 in Figs. 9 and 10 dcm- 
onstrates the degree of accuracy of tne given relations. 
The discrepancy does not exceed 50/b, i.e. falls within 
the accuracy limits of the experiments under con- 
sideration. It is clear, however, that a complete veri- 
fication of the suggested formulae requires exper- 
imental data on heat and mass transfer in decelerating 
wall flows with different physical properties to com- 
pare them with the data for gas flows. 

A very attractive aspect of the scheme of reasoning 
used is the simplicity with which the general heat and 
mass transfer law can now be derived. For obtaining 
such a law. it suffices to sum equations (9~) and (Yd) 
that represent the inverse half-power law (valid in the 
upper part of the gradient sublayer) and the tcm- 

perature defect law (valid in the outer zone) : in equa- 
tion (9d), just as above, Q(yH) ‘,’ on the left-hand 
side is replaced by Q($) ’ ‘. assuming that 
(S: H = const. = 1. On making such a summation and 
taking the apparent equality (r, - T,); t, = \/Cc,, ‘-7), 
St into account, one obtains 

(75) 

This formula must be valid for both the accelerating 
and decelerating wall flows, but, as was demonstrated 



Heat and mass transfer in pressure-gradient boundary layers 2847 

PIG. f 1. The function @(Z) in the heat transfer law, equa- 
tion (25), for flows with an adverse pressure gradient. For 
notation see Table 1. The solid line corresponds to equation 

(26). 

above, only for the latter case are there some exper- 
imental data which enable its verification. 

For the case of a decelerating flow, the function 
KY), entering into equation (25), can be approxi- 
mately determined from equation (18) : as regards 
KY), this is the universal function of the parameter 2 
that appears in equation (9d) and which must tend to a 
constant for Z -+ m (see equation (9b)). The function 
K$@ can he estimated very roughly by assuming that 
the inverse half-power bW (9d) is valid up to the upper 
edge of the thermal boundary layer (q = 1). This 
assumption results in X(38 = -K(f), implying that for 
Z cc 1, the function K$? is proportional to -Z- ‘I’, 
whereas, when 2 -+ co, it tends to the constant close 
to - 3. According to the available experimental data 
given in Fig. 11, the experimental values of the func- 
tion I’@~ are very scattered which, of course, should 
have been expected, since KY) = ,/Z[(Tw - To) j 
t,- Kfl] represents a small difference of large 
quantities which is multiplied additionally by a 
relatively large factor JZ. However, the latter circum- 
stance also has a positive side, since, owing to it, 
even marked variations in K(3(i) exert only a slight 
effect on the predicted value of St. On the whole 
the data collected in Fig. I1 do not contra~ct the 
above conclusions about the form of the function 
K’,B)(Z), except for the fact that, by these data, the 
limiting value of Kjs) can never be negative for Z >> 1. 
An acceptable approximation of the experimental 
data can be obtained, for instance, by setting 

KY’ = 5(1- 11 JZ). (26) 

The predicted values of the dimensionless heat 
transfer coefficient, which are based on equations (I@, 
(25) and (26), differ from the experimental values on 
the average by no more than 5%, whereas the 
maximum difference is of the order of 10%. The 
examples of a comparison of calculated and 
measured values of St are presented in Fig. 12. 

Also of certain interest is the limiting form of the 
heat transfer law (25) for y -+ co. Here, when Fe -+ 
s/2 

23 

FIG. 12. Comparison of experimental (dots) and calculated 
(solid lines) values of the Stanton number on the basis of the 
ex~~ments of ref. [I] (a) and of experiments of ref. 161 (b). 

K$@ --) 5((Pr S)/Z) ‘I3 exp (f - Pr Q/2) 

+[2.12ln(S/2)+~(Pr)+4]exp(-2/(SP~)) 

and KY) -+ 5. Therefore, in this case 

-t K&/(2/c& 

Since U,/J($) r 6.3 at large Z (see equation (26) in 
ref. [3]) 

St- ’ = 32+J(Z/ct)* K(28)(S) for Z >> 1. (27) 

When Pr >> 1, with /?(Pr) z 14.8P~,~‘~ starting to pre- 

vail in the expression for KY), the above equation 
simplifies further to 

St- ’ = 14.8,/(2/~,)Pr~‘~ exp (-2/S) for Pr >> 1 

whereas when S >> 2, it acquires the form of the fol- 
lowing relation valid for constant-pressure flows : 

St = 0.067. J(c~/~)Pv+. 

The only difference is that the value of the friction 
coefficient cr for strongly decelerated wall flows 
appears to be much smaller than that for constant- 
pressure or weakly gradient flows. 

It also follows from relation (27) that, for a fixed 
value of Pr (i.e. for instance, for heat transfer in gas 
flows), an increase of the adverse pressure gradient 
results in a decrease of the local heat transfer 
contents. At the same time, here the Reynolds anal- 
ogy coefficient St/(c,/Z) grows. Indeed, it is not diffi- 
cult to infer from equation (27) that at large positive 
pressure gradients 

St/(cs/2) zS 6.3JZ~~~)(S) (28) 
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and, since K(20) changes here comparatively slowly 
(only logarithmically), the magnitude of the ratio in 
question increases rapidly 

St/(c,,l?) - Jz 

despite the decrease of St. This inference is in quali- 

tative agreement with the experimental data of ref. 
[11] and with the approximate calculations given in 
ref. [12]. 

3. TEMPERATURE FLUCTUATIONS IN 

PRESSURE-GRADIENT BOUNDARY 

LAYERS 

While the available literature contains some data 

on the temperature profiles in pressure-gradient tur- 
bulent flows, which are suitable for the verification of 
theoretical conclusions, there are almost no data on 
statistical characteristics of the scalar field (tem- 

perature or concentration) fluctuation in such flows. 
Therefore, the forthcoming theoretical conclusions 
mostly take the form of predictions, which can be 
compared with some data only to a very small degree. 

(1) Based on the moving-equilibrium hypothesis 
which was discussed above (see also ref. [3]) and, 

moreover, assuming that 

max (6,, &) CC 6, CC min (6, H) 

(see Fig. 1), one can formulate the corollaries 
which follow from the application of the general dimen- 
sional arguments to the simultaneous multi-dimen- 

sional probability density of the normalized tem- 
perature (O/r, or Q,,/(yH)/Q) and velocity (u/u, or 
u/J($)) fluctuations at arbitrary IZ flow points 

X, = (X,>.V,> r, ), , X,, = (x,, y,,, z,,). This prob- 
ability density depends on the following dimensionless 
coordinate ratios : 

and also on the ratio y, /6, (or I’, /S,, or y , /H), char- 

the wall. Besides it also depends on the dimensionless 
acterizing the relative distance of the first point from 

combinations 

the logarithmic and inverse half-power laws. It is easy 
to understand that in the first of these zones (i.e. 
in the logarithmic sublayer) all the constant-pressure 
relations summarized in Appendix B must be valid. 
The analysis will therefore be confined to the charac- 
teristics of temperature fluctuations in the gradient 

zone and the outer part of the boundary layer, where 
the effect of the longitudinal pressure gradient is 

displayed. 
In the sublayer where the invcrsc half-power law is 

valid, i.e. where 6, CC J’ CC min (6. H), the regime of 
temperature fluctuations is governed only by two- 
dimensional parameters : 7 and Q. Now, it will be 
assumed that the considered set of points is localized 

in a small volume within this sublayer, so that 
(IX, - X,]) CC min (6, H) and OF K J’, CC min (6, II). 
Then the joint probability density. normalized by the 

appropriate combination of the parameters Q. ;‘. and 
one of the normal coordinates J’~, can depend only on 

ratios (29), J~,u,/v, and Pr but is independent of the 
type of flow, i.c. is the same for flows in tubes. 

channels, boundary layers on a plate, etc. Besides. if 
the selected points are not too close to each other (so 
that 1X,-X,] D max (&, 6,) for any i and ,J). then 
the molecular constants of the fluid also do not atrcct 
the joint probability density. and therefore the list ot 
the dimensionless parameters affecting this density 
includes only ratios (29). 

The horizontal homogeneity of the considered two- 
dimensional flow and its symmetry with respect to the 
.Y _r plane lead to the following additional require- 
mcnt : the probability density must be invariant with 

respect to the sign reversal of velocity components 
TV, i = 1,. , n. Moreover, this density must bc a 
universal function of its arguments, i.e. it must be 
independent of both the flow type and fluid properties 
(but, of course, it can be different for accelerating and 
decelerating flows). For instance, in the case of the 

one-point density 

z = S/S, = ysju:, Re, = S/S, = 6u,lv, 

6/H, Pr = S,jS,, = v/a 

that determine the flow conditions and the physical 
properties of the fluid. 

For the even more simple one-dimensional prob- 

where PbP’ is a universal function of four variables 

ability density p(B) of temperature fluctuations at the 
point X = (s, y, z), which is located within the inverse 
power-law sublayer, the following relation can be 

and U, P, II’ are three components of u. 

easily obtained : 

The above relations between the characteristic 
length scales allow one to consider the analyzed tur- 
bulent boundary layer as a thermally and dynamically 
developed one and, consequently, to eliminate the 
parameter Re, (and Pe,) from the list of relevant 
parameters. Moreover, it follows from these relations 
that, there exist zones in the considered boundary 
layer, where the temperature profile is described by 

(Q/J(Yv))P(~ = P!f’@j(wlQ). (31) 

However, the data needed to verify this simple relation 
are also lacking until now. 

(2) The dimensional analysis also permits one to 
write out relations for one-point moments of tem- 
perature fluctuations and mixed moments of tem- 
perature and velocity fluctuations. It appears that 
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for max (6,, 8,) << y << min (6, H) (32a) 

($“u”,“,‘>/Q”(yr-l)‘~+~+~-~)” = i#k:$(q,&H) 

for y ~6, (32b) 

while in the overlapping layer of these two asymptotic 
expansions (i.e. in the layer 6, CC y CC min (6,H), 
where the inverse half-power law is valid for the tem- 
perature profile) the following relations are true : 

(e”Umv’w’> = .~~~~Q*~~~)(m+n+‘-k)/2 (32~) 

where &A is a universal constant. The exact limits of 
the validity layer for (9a), (9b) and for various 
relations (32~) may, of course, differ. The constants 
a&,{ must be independent of both the physical prop- 
erties of the fluid and the type of pressure-gradient 
flow (but their values can depend on the sign of 
dP/dx). It is also clear that they are equal to zero for 
all the odd values of 1. The value of these constants 
can be estimated from experimental data or from some 
semi-empi~~al closures of the dynamic and thermal 
equations. For the second-order moments of velocity 
fluctuations in the gradient-sublayer equations (32) 
were verified in ref. [I 31. As for the temperature fluc- 
tuations it will be, apparently, more simple to verify 
theoretical predictions for the variance, asymmetry 
and flatness factor of temperature fluctuations in this 
sublayer 

(82)jf: = a($)/[ for uipf << y << min (6, H), 

Sp) = (~‘)/(02)312 = LzY’/~~)‘~ = const., 

Fyj = (@“)/(@“)* = a(4P)/a~)2 = const. (33) 

and also for the second-order mixed moments of tem- 
perature and velocity fluctuations 

<u~)fQ = a’Pioo = const. 

and (v@)/Q = a\p&o = const. (34) 

It is worth noting that the latter relations have the 
same form in the constant-pressure flows, but the 
values of the constants in formulae (33) and (34) can, 
of course, differ from those related to flows where 
dP/dx = 0 (see Appendix B). 

Experimental data related to temperature fluc- 
tuation moments in the pressu~-gradient ffows are 
available only for the moment in the first line of equa- 
tion (33). Measurements of u@/t*, where erg = (8*) ‘12, 
conducted in a strongly decelerated air boundary layer 
on a heated plate [7] are presented in Fig. 13 in the 
form of the dependence of (y’(yyjQ))aO on r. They 
demonstrate that, in accordance with the theoretical 
predictions, (J&‘&J a0 = const. s 1.25. Hence a$‘) r 
1.6, and Fig. 13 also shows that the region, where 
the profile of co/t, obeys the inverse square root 
law, can be described by inequalities (a$/?) 
< y < 0.4H. 

(3) A vertical profile of the temperature dissipation 

FiG. 13. The profile of the dimensionless r.m.s. for tem- 
perature fluctuations in the gradient sublayer according to 

the data of ref. f7]. 

in the gradient and outer zones of non-isothermal 
turbulent flows is determined by the relationships 

NY) = (Q’Y/~~)~~~~‘(~) 

for max (a,, ~5,) << y << min (6, H) (35a) 

WY) = (Q2~~(~~3))~~p)(~, Wf) for Y >> 6,. 

(33 
In the overlapping layer of these asymptotic expan- 
sions (if such a layer exists), the following equalities 
must be valid : 

&‘(rv3YQ2>Nv> = t3’2##*p’(~) 

= q3i2q5j$p’(q, S/H) = cc(s) = const. 

so that 

NY) = ~~~Qz~~~~~3) 

for z&/y << y << min (ii, H). (35) 

Similar arguments can also be applied to the deri- 
vation of the following formula for the turbulent 
energy dissipation : 

E(Y) = ~$‘)y~‘~y’~* when u:/y CC y CC min (S, H). 

(36) 
The comparison of equation (36) with the data 

described in ref. [ 141 yielded the estimate ai”) 2 2.4. 
(4) Interesting inferences can also be made about 

the spatial spectra of temperature fluctuations and 
corresponding correlation functions. For example, the 
longitudinal spatial temperature spectrum E&, y), 
which depends on the wave number k and coordinate 
y, is given for a pressure-gradient flow by the relations 

&i(k Y) = ~Q~/Y)~$~~‘(~Y , 5) 

for max (S,, 6,) << y << min (6, H) (37a) 

-G&Y) = (Q2/v)@$“‘(ky, n, S/H) for Y >> 6,. 

(37b) 
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There, for a,, << y << min (6, H) 

&,((/c,_t’) = (Q’/i.)e&J(k_V). (37) 

Let us now consider the bchaviour of the function 
e$/(ky) for the wave numbers k belonging to the 
inertial-convective range. The upper limit ofthis range 
corresponds to the length scale 6, = (r’ir:)’ ’ and 
then the corresponding temperature microscalc 

&, = (a’/c)’ a. which, in the considered layer, is of the 

form 

6, - (v/u*)(WjO’ J 

and 6,, = (a/u,)((Pv S)/d’t)’ “. (38) 

As to the lower limit of the range, it must correspond 
to the length scale which is much smaller than 6 and H. 
For thermally and dynamically developed turbulence 
(Re, >> 1 and Pe, >> I) the corresponding range of the 
values ky includes the values satisfying the inequalities 
ky << 1 and ky >> 1. For the locally isotropic small- 

scale turbulence k >> y ’ , and here the Obukhov- Cor- 
rsin -5/3 power law is valid. Hence Eo,,(k, y) - 
~~~ i’3km5.1 and, consequently, c# - (ky- “’ for 
ky x 1. In the other limiting case where k_r << I. it 
can be assumed that &‘(k~~) tends to the limit 

If this assumption is true, then for the sublayer, where 

the inequalities ~511; K _V << min (6, H) are satisfied, 
the following limiting laws hold true 

Thus, unlike the logarithmic sublayer, where (see 

Appendix B) for long-wave perturbations the spec- 
trum of temperature fluctuations satisfies the -I 
power law (B8), in the gradient sublayer, where the 
inverse half-power law is valid, the spectrum EHH does 
not depend on the value of ky for ky cc 1. Similar 
arguments can be applied to the derivation of for- 
mulae for the velocity fluctuation spectra E,,(k) (where 
i = I, 2, 3, and U, = U. U, = U, 1~~ = W) in the gradient 

sublayer 

and also to the Reynolds stress cospectrum 

(~‘r)~‘&,,.(ky) = G’y;(ky) ’ for kycc I (41) 

and the velocity and temperature cospectra 

(Qy) ’ E,,(kl;) = G jj’ (k.v) ’ for ky cc 1 

wherei= 1,2. 

(42) 

Equation (40) for E,,(ky) was derived and verified 
in ref. [14] where the approximate values of the uni- 
versal constants C(/‘/ = 0.9 and G$’ = 1.6 were also 
obtained. 
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FIG. 14. The longitudinal spectrum of longitudinal veloctty 
fluctuations [7] in the gradient sublayer (< = I. 2. I. 5.2) and 

outside of it (~,:6 == 0.59). 
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Fio. 15. The longitudinal spectrum of normal velocity flue- 
tuations [7] in the gradient sublayer. For notation see 

Fig. i4. 

Figures 14- 18 give the measured values of the spec- 
tra and cospectra E,,,, E,., , E,,.. E,,,, and E, ,) in an 
equilibrium decelerated boundary layer with heat 
transfer studied in ref. [7]. The parameters of the 
considered flow (Z r 45 and S g 35) show that in the 
cross-section measured (x = 955 mm) the flow state 
was close to separation, An appreciable difference 
between the thicknesses of the thermal (H = 68 mm) 
and dynamic (6 = 93.3 mm) boundary layers in the 
flow cross-section studied does not affect noticeably, 
as was explained above, the characteristics of tur- 

bulence in the gradient sublayer. 
The velocity fluctuation spectra measured in ref. [7] 

agree satisfactorily with theoretical equations (40) and 
(41). Here the coefficient G:q’ z 1.2 turns out to be 
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FIG. 16. The longitudinal spectrum of Reynolds stress [7] in 
the gradient sublayer. For notation see Fig. 14. 
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FIG. 17. The longitudinal spectrum of temperature fluc- 
tuations. For notation see Fig. 14. 

slightly different from the estimate obtained 
previously, whereas the values C(Fl E 0.9 and C# 
g 1.2 together with a$‘) = 2.4 lead to the value of the 
universal Kolmogorov constant C = Eii/83k-5i3 g 

0.5 which is presently assumed to be the most re- 
liable. These experimental data also allow an evalu- 
ation of the universal constants Gyj 2 1.4 and 
G(+‘j E 0.3. It must also be noted that the maximum 
extent of the range, where the ‘ -2 power law’ 
(second line in equation (40)) is valid, is observed at 
the proximity to the wall, where, as a rule, the ‘ - 5/3 
power law’ is almost unperceptible. However, the 
‘ - 513 power law’ is displayed quite distinctly on the 
outer boundary of the gradient sublayer (at 5 = 5.2) 
and outside of it (at y/S = 0.6). 

The spectra IJoB and the cospectrum E,,(ky) do 

4 0.2 t ky )-l 

10-l - 

10-3 I I 

10-2 10-l 100 10' 

b' 

FIG. 18. The cospectrum of the temperature flux in the 
decelerated boundary layer. For notation see Fig. 14. 

not contradict theoretical conclusions either, though 
the scatter of the data in Figs. 17 and 18 substantially 
exceeds the corresponding spread in the data on vel- 
ocity fluctuations. Thus, the estimation of the con- 
stant G# in equation (39) from the experimental 
results obtained at the points y/S = 0.016 and 0.043 
yields G@ z 4, whereas the data at y/S = 0.15 lead to 
the estimate G$) z 2 5 . . 

In the validity region of the -5/3 power law (for 
ky 3 0.5) one obtains C&j z 0.5, i.e. for CI~ = 1 the 
following estimate of the universal Obukhov-Corrsin 
constant Cr = E,,/N&- ‘I3 is obtained C, g 0.7. This 
estimate agrees well with the data of the most reliable 
measurements (see ref. [42]). 

The accuracy of the estimate G$) 2 0.2 (see Fig. 
18) is apparently rather low, but at present there are 
no other experimental results permitting the esti- 
mation of one or other of the coefficients given above. 

(5) For the second-order longitudinal correlation 
function 

&&,A = <@(x+r,y,z)Nx,y,z)) 

the following equations can be obtained : 

&&,y) = @/4'~~2~pY~/~, i;> 

for max (a,, 6,) << r, y cc min (6, H) (43a) 

&(r, y) = ~Q2/~~)~B3~PW~, rl, a/H) 

for r, y >> 6, (43b) 

and 

&&,Y) = (Q’/u~)R8”‘(r/v) 

for 6, << r, y cc min (6, H). (43) 

The range of variations in the argument of the latter 
function is given by the inequalities 
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max [(Y+J[)-~:~, (y+Jc Pr)m’!4] 

and for a dynamically and thermally developed tur- 
bulence it includes the values satisfying the inequali- 
ties r/v >> 1 and r/y << 1. For small values of 7,‘~ with- 
in this range the Obukhov ‘2/3 power law’ [15] is 
valid and hence 

@v/y) = (02)(yy/Q2)-rl,p’(r/y)2:3 (44) 

where rg) is the universal constant simply related to 
C&S). 

For r/v >> 1, the assumption about the existence of 

&IL Rbp’(r/y) = ahp’ = constant 

leads to the conclusion that here 

(@+r)Q(x))/tS = ukp’/ Jt (45) 

(cf. equation (Bl 1) valid in the logarithmic sublayer 
for r/y >> 1). 
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APPENDIX A. THE THICKNESS OF A 
TURBULENT THERMAL BOUNDARY LAYER 

The thickness of a dynamic boundary layer is usually 
delined as the distance from the wall to the point where the 
mean Aow velocity U(a) is equal to some fixed part of U, 
(e.g. one of the most common definitions of 6 is based on 
the relation U(6) = 0.99U,). However, the thickness H of a 
thermal boundary layer, even when heat can be considered 
to be a passive admixture, depends not only on dynamic 
ch~acteristics of a boundary layer, but also on fluid prop- 
erties (first of all, molecular Prandtl number). This depen- 
dence is especially significant for Pr >> 1, when the main heat 
transfer resistance is concentrated in a very narrow wall 
region. If, by the analogy with the definition of S, His defined 
with the aid of the relation TY - T(H) = 0.99(T, - T,,), then 
at Pr >> 1, the thickness H will be much smaller than 6. 
However, it is natural to think that the thicknesses 6 and H 
must have the same order of magnitude since both of them 
determine the value of y where the turbulent mixing becomes 
negligible. Therefore, it seems natural to exclude from the 
consideration the sublayer of molecular heat transfer in the 
definition of the thickness H. 

An empirical interpolation formula for the function p(Pr) 
on the right-hand side of equation (8a) is given in ref. [4}. 
This formula is based on the analysis of a number of measure- 
ments of temperature profiles in boundary layers; it has a 
correct asymptotic behaviour at Pr >> 1 and Pr << 1 and can 
be written in the form 

j?(Pr) = (3.85Pr”‘--1.3)2+2.121n Pr (AlI 

(here some small modifications of the original equation 
inspired by the most recent data are taken into account). 
Equation (Al) may be used for the following estimate of the 
temperature difference between the wall and the upper edge 
of the molecular heat transfer sublayer (of thickness A) : 

K. - W)l/t* = BV’r), t* = Q/u*. 642) 
The thickness A can be defined, for the example, as the 
distance from the wall to the point where the eddy thermal 
diffusivity sH becomes equal to the molecular thermal diffu- 
sivity. The results of the statistical analysis of the exper- 
imental data on mass transfer at Pr >> I described in ref. 
[16] show that near the wah .a& r 6 x 10-4(y~*/v)3. Hence 
A z 12Pr-“3(v/~,) for Pr >> 1. According to this definition 
of A, it is easy to show that the same estimate of A proves to 
be valid also in the case of heat transfer in gases (i.e. for 
Pr N l), where A has the order of IO(v/u,). Assuming that 
the temperature profile is given by the linear equation 
T+ = Pry+ for y < A results in T+(A) = [T,- T(A)]/ 
t* % 12P? when Pr 3 1; this estimate agrees satis- 
factorily with equations (Al) and (A2). 

The exclusion of the wall sublayer of thickness A from 
consideration makes it reasonable to base the definition of 
H on the relation T(A) - T(H) = 0.99[T(A)- TJ. Accord- 
ing to equation (A2) this relation leads to the equation 

T+(H) = 0.99T,+ +O.Olj(Pr) (A31 

which gives the estimate of H the independence of which of 
Pr is very weak. 

For the logarithmic velocity profile the dimensionless vel- 
ocity at the top of the viscous sublayer is just a constant 
(independent of Pr) of the order of ten. Therefore, the 
exclusion of the viscous sublayer does not considerably affect 
the estimation of the thickness of the dynamic boundary 
layer. In fact, the relation U, (6) = U(~)/U,, which is anal- 
ogous to equation (A3), has the form 

U*(6) = 0.99lJ,+ $0.1. (A4) 

In the developed turbulent boundary layer U,, = (E&-‘!~ 
is very large, and hence equation (A4) practically does not 
differ here from the usually used equation U+(S) = 0.99U,+. 
However, in the case of the thermal boundary layer, where 
the molecular Prandtl number plays an important role, the 
situation is quite different. 

An experimental determination of H, is often rather 
difficult (especially when Pr is large) ; therefore it is desirable 
to replace H by some more convenient length. The simplest 
(and most easily measured) length scale is the distance x of 
the given cross-section from the front edge of the plate (or 
from the point of the boundary layer turbulization). The 
equation expressing 6 in terms of x was given in ref. [ 171 for 
the constant-pressure turbulent boundary layer ; it is justified 
by the dimensional analysis and has the form 

dS/d_x = a@&,) (A5) 

where the constant a was found to be close to 0.3 [3, 201. If 
the dependence of H on Pr is neglected, the arguments which 
lead to equation (AS) can also be applied to the derivation 
of the similar equation determining the dependence of the 
thickness H of a thermal boundary layer on x. Thii equation 
has the form 

dHl& = (%‘u,) (A6) 

where the coefficient b can differ from a, but hardly by much. 

b 

I it I , / rl I 31, 

6 8 100 2 4 6 6 101 2 4 6 8 tO2 

PI 

FIG. Al. Determination of the coefficients b in equation (A6) 
from the experimental data of: 1, ref. [lS] ; 2, ref. [6] ; 3, ref. 

1191. 
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Note that according to equations (AS) and (A6) the thickness 
B and H are proportional to each other if the dynamical and 
thermal turbulent layers begin to develop at the same point 
(e.g. at the front edge of the plate). 

The experimental data from refs. [h. 18, 191 rclalcd to 
the development of thermal boundary layers in constant- 
pressure flows of different fluids (with 0.7 < Pr < 64) arc 
given in Fig. Al. The data given in this figure agree well with 
the conclusion about the proportionality of H to (3 and show 
that h = 0.45 and hence Hi6 = hio 2 0.4.5/0.33 z I 1. 

APPENDIX B. CHARACTERISTICS OF 
TEMPERATURE FLUCTUATIONS WITHIN THE 
LOGARITHMIC SUBLAYER OF A CONSTANT- 

PRESSURE BOUNDARY LAYER 

It has already been explained in this paper that the 
relations for the temperature fluctuations valid within the 
logarithmic sublayer of a constant-pressure boundary layer 
are valid also within the pressure-gradient boundary laqers 
if max (a,, Jh) CC J << 6,,. Thcreforc. such relations are quite 
interesting for the problem studied in this paper and it is 
reasonable to consider them here in short (see also rcfs. 
[20. 361). 

The corollaries from the dimensional analysis given at the 
beginning of Section 2 of the present paper can, of course, 
bc directly applied to the logarithmic sublayer where they 
have especially simple form. In particular, if min (6, H) >> 
1’ >> max (6,, c’$,) then the probability density p(B) of tem- 
perature fluctuations 0 at the point I. ~1, : must have the 
form 

/*p(fJ) -= P,,(f):/*) ( 13 1) 

where P,, is a universal function of me variable. For one- 
point moments of temperature fluctuations (ok) and mixed 
moments of temperature and velocity fluctuations 
(0”u”‘~“w~‘) in the logarithmic sublayer the following sim- 
plified form of equations (32~) and (33) must be valid : 

(O”)/f’;; = LJ,, : const. (B2) 

(()‘#J{,‘,$.‘>/ [“,/,I / ,I + 1 = u/, r,,u, =: const. 183) 

Here u,, and a, ,,,,,, are universal constants independent etthcr 
of the flow type or of the physical properties of the Ruid. 

However, in the thicker wall region 1‘ CC min (8, H) (which 
includes the molecular conductivity sublayer) the values of 
the one-point moments are not universal constants but can 
depend on the distance from the wall and physical properties 
of the tluid. For example. in this region (0’)’ ‘:I, -= 

f(,r+. Pr), where ,f is a universal (i.e. independent of the 
flow type) function of two arguments Pr and J’+ = _L’;c?, 

Some experimental data related to the second moment of 
temperature fluctuations and to the coefficient of correlation 
R,,, = (uO)/((u’)(H’))’ ’ between the temperature and 
longitudinal velocity fluctuations in the air flow (Pr = 0.7) 
along a smooth wall are shown in Fig. RI, The experimental 
points in Fig. RI are rather scattered but on the whole the 
results of the measurements of (0’)’ ‘!‘f, in tubes, channels, 
and boundary layers on a flat plate clearly cluster round a 
single curve which. for I., > 100. coincides with the horizontal 
straight line (I)‘) ’ ‘, I, z 1.3. Thus. Fig. 91 shows that 
N? z (1.3)’ E 1.7 and also permits one to suggest an empiric 
equation for /, (J, + .0.7) indicated in this figure. 

For the verification of the universality of the constant N:. 
the data on the distribution (0 ) 2 ’ ‘II, within the logarithmic 
sublayers of flows of fluid with physical properties different 
from those of air can be used. Such data are available for 
flows of mercury (Pr = 0.026), water (Pr = 5 IO). cth- 
yleneglycol (Pr = IO 30) and lubricating oil (Pr = 50 100). 
Some of these data (including the data for air flows too) are 
given in Fig. 92 where the uniform distribution of coor- 
dinates along the axis is used (such a distribution in contrast 
to the logarithmic distribution used in Fig. 91 does not 

conceal the scatter of experimental points). In spite of con- 
siderable scatter of the points (partially averaged in Fig. 

82) they do not contradict the assumption that the value 
(0’)’ ‘I/* in the logarithmic sublayer depends neither on 
f’r (within the range covering more than three orders 01 
magnitude) nor on the type of the flow and is close to I .? 

The measurements of mixed moments of temperature and 
vclocit> fluctuations can be found just in a few papers and 
they correspond mainly to the second-order moments (i.c. 
tothecaseswherek+m+,l+/= 2).Clearlya,,,,,, -: -I and 

L~llill, : 0, but for the determination of the universal constant 
(I, ,/,,, m equation (83) the expertmental data arc needed 
Such data are given in Fig. Bl for the case where PV 7 (i 7 
The data agree with the assumption on the independence OI 

R,,,, of,~ , within the logarithmic sublayer and show that here 
R,,,, 2 --0.7, i.c. 0 ,,,, (, z ’ ’ ” - R,,,((O )(u-)) -.u,/, zz --0.7 . 
1.3 x 2.2 z -2.0. Note that this estimate of U, ,,,,, is L’LIW 
siderably lower than the atmospheric estimates of the 
same constant (SW ref. [ZO]). Thus. in ref. [20] the csti- 
mate it, ,“(, =- -3.5 is given as the best tit to the atmo-- 
spheric data. It is worth noting, however. that the atmo- 
spheric estimates of the constants (u’),u~ and, especially. 
<CI’)/ti exceed considerably the laboratory estimate ofthesc 
constants: therefore the value of the correlation coeficient 
K!,,, deduced from the atmospheric measurements prover 
to be quite close to the value given by the laborat~~ri 
measurements. 

The \,due 01‘ the correlation ~~~~llic~cnt R,,, UI ilw 
logarithmic sublayer can be easil) c,tlculntrd from the 
known experimental data: K,,, ~c?~)‘((r’>(O’ >I’ J- 

II x I.?) ’ 2 --0.7; It cim be seen tllat it i:, close Iii lhc 
caluc 01 H:,,,. 1 iouever. the direct experimental mcasurcmcnts 
01’ R,,, in the logarithmic sublaycr are quite scattered. Thus, II 
was found in ref. [22] that in a tube Row R,,, 2 -0.X Lhi- 
Kc, -=: 31.5 x 10‘ and R,,, z -0.65 fol- Rc = 260x IO’. while 
for an a,r boundary layer on a plate, it was found in rcfs. / 18. 
351 that Re,,; s -0.6. Moreover. the tube flow measuremsnts 
described in ref. [23] resulted in the estimate H,,, 1 0.4 
Therefore, the additional careful measurements of R,,, arc 
necessary. The asymmetry S,, : (O’>,(O’>’ ’ and flatness 
factor f,;, ~ (O”)/(O’>’ of the tempcraturc fluctuations are 
the most interesting higher-order moments of Cl. In the log- 
arithmic sublayer 

.Y,, : u,:ti; - -= const.. I‘;) LI~ rri -~ consI tH4j 

Some experimental data on these characteristics are shown 
in Fig. 93. Most of these data refer to air flows in lubes. 
channels and boundary layers : they give rise to an impression 
that within the logarithmic sublayer .S, differs from zero onl) 
slightly and 3.2 < Fi, $ 2.8 (as the first approximation OIIC 

can USC the estimate F,, = 2.5). To verify these conclusions. 
the averaged results of measurements of S,, and F’,, in the 
logarithmic sublayer of flows of some other fluids (namely. 
water, lubricating oil, and mercury) arc also shown in Fig. 
93. Thcsc data agree with the above-mentioned estimatca 
(1,:~ ’ 2 0 (i.e. <I, z 0) andn,:ul z 2.5 (i.e. a, z 4.?).Notc. 
however, that the data shown in Fig. B3 are quite scattered 
(apparently because of insufficient accuracy of the mcasure- 
mcnts of the third- and fourth-order moments) ; therefore the 
estimates given above must beconsidered as only preliminar> 
ones. 

The similar dimensional arguments can be applied to the 
vertical profile of the so-called ‘temperature dissipation’. i.c. 
rate of molecular dissipation of (0’) ‘2 

According to ref. 1361, within the logarithmic sublayer 

N(.r’) = r(rr*&V) (95) 

where x is the same coefficient which enters mto the log- 
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FIG. Bl. The profiles of (62)“2/t, and rZ, in the wall zone of the air turbulent boundary layer based on 
the data of: 1, ref. [21] ; 2, ref. [22] ; 3, ref. [I 81; 4, ref. [23] ; 5, ref. [24] ; 6, ref. [25] ; 7, ref. [26] ; 8, ref. 

[27] ; 9, refs. [28,29] ; 10, ref. [30]. 
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FIG. B2. The profile of (Bz)‘iz/t* in the logarithmic sublayer according to the data of: 1, ref. [21] (air flow 
in a pipe); 2, ref. [31] (mercury and lead in a pipe); 3, ref. [22] (air in a pipe); 4, ref. [18] (air above a 
plate) ; 5, ref. [19] (air and oil above a plate) ; 6, ref. [32] (water in a pipe) ; 7, ref. [23] (air in a pipe) ; 8, 
ref. [24] (air in a plane channel) ; 9, ref. [26] (air above a plate) ; 10, ref. [27] ; 11, ref. [30] (air in a pipe) ; 

12, refs. [28, 291 (air in a pipe and a plane channel). 

arithmic law (8) of the mean temperature distribution, i.e. 
a r 2.12. 

Finally, consider the longitudinal spatial spectrum of tem- 

CC 
= t: 

s 
(ky)- ‘Q&J) d&y) = G:. 

0 
perature fluctuations E.&k, y) measured by a number of 
experimentalists. Hence (ll*>/t: = a2 is a universal constant ; this conclusion 

For the range of wave numbers k satisfying the inequalities has been already formulated above and it agrees with the 

min (6, H) >> k- ’ x max (a,, a,,), the spectrum E&k, y) in experimental data shown in Figs. Bl and B2. 

the logarithmic sublayer has the form In the case of a fully developed thermal boundary layer 

.%&.y) = r:k-‘e,(ky) 
the range of wave numbers where equation (B6) is valid 

(B6) includes the values of k satisfying both the inequalities /CJJ >> 1 

where e&b) is a universal function. Assuming that the and ky cc 1. If the first of these inequalities is valid, then 

contribution to (6’) of the long- and short-wave com- according to Obukhov [IS] and Corrsin (see ref. [42]) the 

ponents of the temperature field with wave numbers beyond function e&ky) and the spectrum &(ky) must have the form 

this range can be neglected, we obtain from (B6) the relation E&kY) = C&-2’3k-“3 

(e2) = &(krY) dk 
and e&ky) = CB(ky)-213. (B7) 

It is seen that E&k, y) is proportional to y- ‘I3 for ky >> 1. 
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FIG. B3. The asymmetry and flatness factor of temperature fluctuations in the wall zone of the boundary 
layer. Notation is given in Fig. B2. The following data are added : 3, ref. [33] (a water flow in a pipe) ; 7, 

refs. f34, 351 (a water flow in a plane channel). 

In the case where ky << 1, but k x min (6 ‘. H I) the 
wavelength of the considered spectral components is much 
greater than the distance JJ from the wall. It seems natural 
to assume that the statistical regime of such large-scale com- 
ponents of the temperature field does not change at moderate 
vertical shifts and therefore the spectrum ~~“(~) does not 
depend on y for ky << I. This assumption was formulated in 
refs. [37, 381 in application to longitudinal velocity spectra 
(and without the indication of the wave number range where 
it is valid) ; it is equivalent to the assumption on the existence 
of a finite non-zero limit 

Then 

,t:lm, r&@) = e&O) = G,, = const. 

E,,jk,p) = G,rik ’ for k <<zy ’ 

where Go is a universal constant. 
The existence of the wave number range where the tem- 

perature spectrum satisfies equation (B8) was discovered by 
some experimentalists (see, e.g. ref. 1231) who did not try to 
justify the law and indicate the limits of the range of its 
validity. Note, however, that the data confirming the law 
(B8) are much less extensive than those related to the similar 
law for the velocity spectrum and almost all these data are 
based on the measurements in air flows (Pr g 0.7). Exper- 
imental values of E&k, J)/& taken from refs. [18, 23. 241 
are shown in Fig. B4. It is seen that the data confirm the 
validity of the - 1 power law (BSS) and of the -5/3 power 
law (B7) for two ranges of wave numbers k and also show 
that both the ranges are rather wide and the transition zone 
between them is so narrow that in a first approximation 
these two ranges can be considered to adjoin to each other. 
According to Fig. B4 the - 1 power law (B8) is valid for 
ky & 5.2 while the - 5/3 power law (B7) is valid for ky Z S .2 ; 
moreover 

F@ g 0.3, c, Z 0.9. 

(These indicated estimates of the coefficients G, and C, and 
the boundary between two ranges are preliminary ones and 
they must be confirmed by careful measurements.) The esti- 
mate of Co permits one to estimate also the Obukhov-Cor- 
rsin constant C, of the equation E,,(k) = C~IVE~~~‘~~~~~~~ 
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FIG. B4. The longitudinal spectrum of temperature tluc- 
tuations in the logarithmic sublayer for wave numbers in the 
inertial~onvective interval according to the data of: 1, ref. 

[18] ; 2, ref. [23] ; 3, ref. [24]. 

describing the - 513 power law for the temperature spectrum. 
Since E = AU:/JJ and N = au, ~</JJ in the logarithmic sublayer 
where A z 2.5 and E z 2.12, CT = C,,A”3/s( g 0.6, if 
C, g 0.9. This estimate of Cr agrees satisfactority with most 
of the other estimates of the Obukhov-Corrsin constant 
collected in ref. [42]. 

The data on E,,(k) permit one also to calculate the spatial 
longitudinal correlation function of temperature fluc- 
tuations. The - 5/3 power law (B7) implies that 
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&W = <W+r,.w) ~Wkv, zl>i<@*> where& = I-G~[l.5+y+(3/2)In(C~/G,)]/n~;seeref.[14]. 

= 1 - &@/Y) 2’3 for y >> r >> s, (B9) 
However, the estimate (B 10) is rather crude ; a more precise 
result obtained by ~rfo~ing the Fourier transfo~ of the 

where & = (v’js) If4 is the so-called Kolmogorov microscale 
spectra E&c) consisting of two power ranges has the form 

(of dimension of length), Be = 3CJ(1/3)/4a,, and r the r- R&r) = L,--de In (rJy) for y <(. r cc max (6, H) 
function (cf. ref. [43]). The - 1 power law (B8) together with 
law (87) imply that @I 1) 

where dB - GB/aZ ; see ref. [43]. However at present there are 
R&r) = Lo = const. for y << r cc max (S, H) (BlO) no data to verify the theoretical results (Bl 1). 

TRANSFERT DE CHALEUR ET DE MASSE DANS DES COUCHES LIMITES AVEC 
GRADIENT DE PRESSKON 

R&m&-La structure d’un champ scalaire (tem~ra~ure ou ~n~ntration d’un mblange passif) dans des 
couches &mites en &quilibre et avec gradient longitudinal de pression est &tudi& par l’analyse dimensionnelle 
pour une r&ion af&e nomm&e “sous-couche B gradient” (oti la distribution de tem$ratnre moyenne est 
d&rite par une loi demi-paste inverse) qui existe & la fois dans des &coulements accClt%s et dCBBr& 
ri gradient de pression. La loi d%cart de tem~rature, de forme sp&ciale, est valide dans la zone exteme des 
couches limites g fort gradient. Les donnCes exp&imentales disponibles sur les profils de temphrature dans 
les Bcoulements d&&r&s permettent de d6terminer les constantes universelles et les fonctions entrant dam 
les relations thkoriques et d’obtenir des formules ~interpolation d&ivant le champ de temp&rature 
moyenne dans de telles conditions. En supposant qu’une couche de recouvrement existe oti la loi d%cart 
et celle de sous-couche d gradient sont ii la fois valides, on peut obtenir la loi universelle de transfert de 
chaleur et de masse. Les coefficients numkriques de cette loi sont estimes pour les d&c&rations. Les formes 
de quelques caractt%istiques statistiques de fluctuation de temp&ature sont compar&es avec les don&es 

ex~rimen~les disponibles. 

WARME- UND STOFF~~ERGANG IN GRENZSCHICHTEN MIT EINEM 
DRUCKG~DIENTEN 

Zusammanfassung-Die Struktur eines Skalarfeldes (Tempera&r oder Konzentration eines nicht reagier- 
enden Gemisches) in Grenzsc~chten mit gleitendem Glei~hgewi~ht und mit _Druck~adienten in Lzngs- 
richtung wird mit Hilfe der Dimensionsanalyse untersucht. In diesen Grenzschichten existiert ein selbstghn- 
liches Gebiet, das als “gradient-sublayer” bezeichnet wird und dessen mittlere Temperatur dem inversen 
Wurzelgesetz gehorcht, und zwar fiir Wandstr6mungen mit positivem und negativen Dru~kgradienten. 
Da~~rhinaus ist das Temperaturfe~ergesetz in einer besonderen Form im X&en Bereich von Grenz- 
schichten mit starken Gradienten giiltig. Die verfiigbaren Versuchsdaten iiber Temperaturprofile in ver- 
ziigerten Randstramungen erlauben es, universelle Konstanten und Funktionen zu bestimmen, welche 
in die theoretischen Beziehungen eingehen. Zudem werden Interpolationsformeln zur Beschreibung des 
mittIeren Tem~raturfeldes fiir diese Bedingungen ermittelt. Unter der An&me, daB eine aber- 
gangsschicht existiert, in der sowohl das Fehlergesetz als such das “gradient-sublayer”-Gesetz gilt, ergibt 
sich ein verallgemeinertes Gesetz fiir die Wlrme- und Stoffiibertragung. Die numerischen Koeffizienten fiir 
dieses Geseu werden Wr den Fall einer Striimung mit verziigerten Druckgradienten bestimmt. Es werden 
einige statistische Eigens~h~ten der Tem~raturfluktuationen (ins~sondere die mehrdimensionale 
Wahrscheinlichkeitsdich~, die Spektren und Momente) in der “gradient-sublayer”-Schicht mit Hilfe der 

Dimensionsanalyse bestimmt und abschlieBend mit verfiigbaren experimentellen Daten verglichen. 

TEI-IJIO- H MACCOHEPEHOC B I-PAAEHTHOM HOI-PAHIlYHOM CJIOE 

&EOTaw& ~OMO~~KOM6~H~HMeTOAOB~3MepHocnl~KC~M~TOTH~~KwXpa~O~e~H~~~Ae- 

AoqoeaHa wpyr~ypa ocpemiemioro cKampziof0 nom (TeMnepaTypti mm XonAe~a~~ naccmiol 

ISpHMeCM)B Typ6yJIeHTHbIX IlOQWWilihIX CnOIIX C UpOAOAbHMM rp@lHeHTOM AaBAeHSiS, yCKOpKlOlAKM 

mm 3abteAmuumi noToK,~ ycno~~nxcnpasemmmcr~ rmoTe3bI nowxbHoZi paaHonecHocTa TeYemn. 

rIoKa3aH0, YTO tiamwie AononwiTenbworo napaMeTpa--np0AoAbHoro rpaA5ieHTa AaBAeww- 

npFtBOA&iT K ~O~~eH~~ B nOr~H~H0~ CJlOe o6xacm, Pa~~~neneH~e Te~epaTyp~ B KOTOpOti OITR- 
cbreaeTcn“o6paTmm 3axo110~ KBanpamoro ICO~XR". B COOTB~TCTBAHC~A~K~~SHIIMH Teopm L+TOT 

3axoH OKa3bERWTC~ cnpmemuiabmf K&X AJu3 3aMeAmnomixcn, TaX H yCKOpSIOl4SXCR IIOTOKOB. llpn 

3TOM BO BHemieii 3oife norp~~~Hor0 izion, pa3Bneawu4erocr B ycJx03Ef5Ix cymecTBeHHoro npOAOJIb- 

nor0 rpaAHeHTa ndoro 3EaKa, cnpwwmin c~oeo6pa3mIii 3aKoH Ae+eKTa TebmepaTypM. O~HOBM- 

Ra%Cb Ha HMelOWXCS 3KCtlepHMeHTllJlbHbiX AiWHblX 0 llpO@Jl~X TeMnepTypbJ B 3aM~AJWOU&lXCR 

Rpffcre~HbtXTeqeHEiSx yAaeTcfI 0npeAenwrb 3ziayemis ~~~~bn~xK0~~~ +~HK&, BXOA~~ 

B ~OR~~H~e 06IlIEie ~OTHO~eH~~, H n~pO~Tb ~~Tep~OA~AHOH~e ~B~~~~~, ~03BOA~~~e 

Aokimbcn moniie yAoBneTBopmenbHor0 0n~camK pacnpeAaneHHx TebmepaTypm B 31~~ ycno~arx. 

OcHos~sascb~anpeAnOnO~H~rrocy~ecTe0~iur~ o6nacrmnepeKp~wnsaKotrane~erraRrpaarrewT- 
iioro 3aKona pacnpeAeAenw8 TebmepaTypb2 (T.e. npeAnonaran cyuwmonaeste 06Aaerir cpawmmfn: 

nony¶eH~~x ac~M~oTE~~KHx pa3noxe~H~) nonpeH y~n~~~bn~ 3aKofi Te~oMa~one~n~ B 
rpamieHTaxblx noTorax.&xn crrylan Topb503niuero rpaA5ieziTa Aaweim 0npeAenemi 3Haqemx ICO~I#I- 

i$H)HIUIeHTOB, BXOAKUIHX B 3TOT 3aKOH. Ha OCHOBaHBH CJIemTBHk H3 aHaJlH3a pa3MepHoCTeii, Kahn- 

IIJHXCK odwero BHAa MHOrOMePHOk IUlOTHOCTH BepORTHOCTH %IaXCeH%iii IIyJIbGlywfi TeMnepaTypFJ, 

IqWWKa3aHO H llpOBt?p@HO CpaBHeHHe C 3KCZZ~HMeHTOM ROBeJ&HHe HeKOTOPblX CTBTHCTIIWCKHX XZ@K- 

Ti?pHCTEiK -reMlIepaTypHbiX Ilj’JIbCW@ B I’$YWW%iTHOM IlOACJIW. 


