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Abstract—The structure of a scalar field (temperature or concentration of some passive admixture) in
moving-equilibrium boundary layers with longitudinal pressure gradients is studied by the dimensional
analysis and asymptotic expansion method. It follows from the analysis that a self-similar region named
the ‘gradient sublayer’ (where the mean temperature distribution is described by the inverse half-power
law) exists in both decelerating and accelerating pressure-gradient wall flows. Moreover, the temperature
defect law of special form is valid in the outer zone of strong gradient boundary layers. The available
experimental data on temperature profiles in decelerating wall flows permit one to determine universal
constants and functions entering into the theoretical relationships and to obtain interpolation formulae
describing the mean temperature field under such conditions. Assuming that an overlap layer exists, where
both the defect law and gradient-sublayer law are valid, one can obtain the universal heat and mass transfer
law. The numerical coefficients of this law are estimated for decelerating pressure-gradient flows. The
forms of some statistical characteristics of temperature fluctuations (in particular, the multidimensional
probability density, spectra and moments) in the gradient sublayer are found by dimensional analysis and
compared with the available experimental data.
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1. INTRODUCTION

UNLIKE the study of the dynamic structure of press-
ure-gradient turbulent flows that have evoked a
fairly large number of contributions, the study of heat
and mass transfer in such flows has received relatively
little attention despite the great engineering import-
ance of these processes. This is mainly explained by
great experimental difficulties encountered in the
study of heat and mass transfer. It is clear that the
longitudinal pressure gradient introduces an
additional complexity into the experimental inves-
tigation of the mean temperature field and of its tur-
bulent fluctuations. Therefore, it is no surprise that
the available literature contains very few experimental
results suitable for verifying the conclusions presented
below. Note also that almost all these results relate to
heat transfer in air flows which are characterized by
a nearly constant Prandtl number (Pr = 0.7).

The lack of necessary experimental data also
explains the meagreness of theoretical works dealing
with the temperature or concentration field in a press-
ure-gradient turbulent flow. Here, among the most
important works are the papers by Perry et al. [1],
who, using dimensional considerations, obtained ‘the
inverse square root law’ for the mean temperature
profile in a zone of pressure-gradient boundary layer,
and by Afzal [2], where the method of matched asymp-
totic expansions was applied to derive the same law.
Both these papers used the same experimental data
from ref. [1] related to the air boundary layer on a
plate ; therefore, the possible effect of Prandtl number
on the temperature profile and heat transfer law were
not tackled in these studies.

In the present paper the general analysis of the
problem of heat and mass transfer in pressure-gradi-
ent wall flows will be given. It will be assumed that
Pr = 0.7. This means that the case of heat transfer in
liquid metals, where Pr « 1, will not be considered
here (since there are no experimental data to verify
the theoretical conclusions related to such a transfer).

Only the two-dimensional turbulent flow of an
incompressible fluid will be considered below, and
it will be assumed that the substance transferred is
dynamically passive, i.e. it does not influence the vel-
ocity field. Moreover, it will be supposed that for
both the velocity field U and the temperature (or
concentration) field 7' the hypothesis about the mov-
ing equilibrium is satisfied with an adequate accuracy.
This hypothesis states that, at a given value of the
longitudinal coordinate x, all characteristics of these
fields depend only on the values of the external flow
parameters at the same value of x (see ref. [3] dealing
with the mean velocity field and friction law for press-
ure-gradient flows). It should be noted at the outset
that the validity of this hypothesis for the velocity
field does not automatically entail the same for the
temperature and concentration fields. Therefore, the
condition U,/(y8)"* > 1 (where U, is the velocity at
the outer edge of the boundary layer of thickness J,
y = p~ '|dP/dx| the kinematic pressure gradient, and
p the density), which was stated in ref. [3] as the
approximate condition guaranteeing the validity of
the moving-equilibrium hypothesis for the mean vel-
ocity field, is a necessary one but not sufficient for the
flows studied in this paper. Indeed, certain restrictions
should also be imposed on the boundary conditions
for the T field; in particular, a very sharp variation
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. NOMENCLATURE !
|
\ a thermal diffusivity S 80, = 0y,
u, universal constants
¢, specific heat at constant pressure Greek symbols
Cr skin friction cocfhicient o universal constants
. Ey  temperature spectrum and B(Pry function of Pr entering into equation
temperature and velocity cospectra {8a)
F flatness factor of temperature fluctuations I, function in equation (14)
H  thickness ol thermal boundary laver ) kinematic pressure gradient,
K, universal constants p 'ldP/dx| :
k wave number A thickness of molecular heat transfer 1
N temperature dissipation sublayer
P,  probability density of temperature dx. 0, Kolmogorov and temperature

fluctuation distribution
dP/dx longitudinal pressure gradient
Pr thermal or diffusion Prandtl number
Q temperature flux

q heat flux én coefficient of eddy diffusion of
R, longitudinal correlation functions heat
r argument of longitudinal correlation 0 temperature fluctuations
functions i density 1
S B,/0, = iy v T time
S asymmetry of temperature fluctuations .., universal functions. |
St Stanton number
T mean temperature Subscripts
ly friction temperature, Q/u, 0 temperature ficld
U mean longitudinal velocity + dimensionless quantitics
u, r.w longitudinal, normal to the wall and 0 conditions at the outer edge of the
transverse velocity fluctuations. boundary layer }
respectively p pressure-gradient quantities
u,  [riction velocity W wall.
x.v. 7 Jongitudinal, vertical and transverse :
coordinates. respectively Superscripts 5
v,. <o dimensionless vertical coordinates, 0 refers to temperature field
AR UL V) p gradient quantities. J

microscales of turbulence

. 0, 0, viscosity, heat transfer and
pressure-gradient length scales.
respectively, v/iy, afuy. ug /7

of the wall temperature 7, will make the structure of
the temperature field dependent on d7.,/dx, i.c. it will
lead to the inapplicability of the moving-equilibrium
hypothesis for the temperature ficld even in the con-
stant-pressure case.

2. MEAN TEMPERATURE PROFILE AND HEAT
TRANSFER IN PRESSURE-GRADIENT
FLOWS

2.1 Theoretical analvsis

Since there are no experimental data on mass trans-
fer in pressure-gradient boundary layers, only heat
transfer will be discussed below, bearing in mind, how-
ever, that the results can also be applied to mass
transfer after evident change of notation.

In addition to dimensional parameters that were
listed in ref. [3] as relevant for the description of the
kinematic characteristics of the moving-equilibrium
pressure-gradient boundary layer (i.e. the parameters

7. 0, the kinematic viscosity coefficient v, and the fric-
tion velocity u,), it is now necessary to add the tem-
perature flux Q = g,/¢,p (where g, is the wall heat
flux and ¢, the heat capacity) or *friction temperature’
1y = Qlu,, as well as the thermal boundary layer
thickness H and thermal diffusivity ¢ = v/Pr.

An attempt will be made to determine, at least
roughly, what conditions guarantee the applicability
of the moving-equilibrium hypothesis to the mean
temperature field in a pressure-gradient flow. For sim-
plicity, only the effect of the longitudinal pressure
gradient on the thermal boundary layer will be con-
sidered which develops on the plate under the con-
ditions where the variations of all the parameters
different from P along the coordinate x are negligible.
The characteristic time . of the longitudinal variation
in the velocity U, of the incident flow, which entails
the variation in the structure of both the dynamic and
thermal boundary layers with x, is equal (o
[dU/dx) ' = U,/y. The temperature relaxation time
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1, is determined by the quantities Q, H, u, and by the
temperature difference T,, — T, between the wall and
the incident flow. Therefore, 1, ~ QH/ul(T,~T,).
Since the dimensionless intensity of heat transfer—the
Stanton number—is defined as St = Q/U (T, —T,)
while (u,/U,)* = ¢;/2, it is obtained that

St 'H
T2 UL

But the validity of the inequality 1, « 7, is clearly
necessary for the applicability of the moving-equi-
librium hypothesis to the temperature field. Hence the
condition

/2 U2
St H » 1 n
is necessary for the possibility to use the moving-
equilibrium approximation in this paper. In the case
of a sharp change in the wall boundary conditions
(when the derivatives dT,,/dx or dg,,/dx can no longer
be regarded as small), it is necessary to check whether
the logarithmic derivatives satisfy the inequalities

d(in 9)

d[In (T, ~ T,)]
d(x/H)

d(x/H)

« 1 « 1. (93]

Under conditions (1) and (2), it is possible to assume
that the temperature profile of the pressure-gradient
wall flow is determined by the values of five length
scales : the thicknesses of the viscous and molecular
heat transfer 8, = v/u, and &, = a/u,, the pressure-
gradient length scale 6, = u}/y, the thicknesses of the
dynamic and thermal boundary layers 8, and H. Thus,
it follows from the dimensional analysis that the tem-
perature profile is described by the function of five
dimensionless arguments and can be represented by
three equivalent expressions

T Qo (yus i Suy &
ay*v'//l V”VV’V,E’Pr

Oy e[ X7 VY Suy O
=3\

0 y 78 Su, &
ZWW?) E,E,f,}},}’r )]

Determination of the form of these functions from
experimental data seems to be unreal. However, the
above formulae can be substantially simplified in spe-
cial flow zones where some arguments of the functions
Y™ take on very large or very small values. Assuming
that the corresponding limits exist, one can simply
replace, in the first approximation, the small argument
by zero and the large by infinity. First, consideration
will be given to the gradient flow with length scales
satisfying the conditions

max (4,,6,) < 6, « min (3, H)
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{cf. schematic (Fig. 1)). The validity of the above in-
equalities means that the turbulent boundary layer is
developed dynamically and thermally so that Re, =
8/, = duyfv>1 and Pe, = H/6, = Hu,ja > 1.
Then it can be expected that the flow is self-similar
with respect to Re, and Pe, and the argument
du,/v in equation (3) can be replaced by infinity,
i.e. can be ignored.

Now simplifications of equations (3) will be con-
sidered which can be used in some special zones of the
turbulent boundary layer.

When 0« y«d, (and, therefore, also when
y « min (8, H)) the scales d,, 4, and H should not
affect the structure of the thermal boundary layer and,
consequently, the temperature profile is described here
by the ordinary law of the wall

aTidy = (WP .. Pry, T,.(») =P (y.,Pr),
T, (3 = [To=TONte, i =¥I0, =yug/v (4

which follows from the first line of equation (3) when
S = 8,/0, = usyjyv — co and when the dependence on
8/H is neglected. In the zone of the validity of equation
(4), the longitudinal pressure gradient, just as the flow
type, exerts no effect on the flow, i.e. here the tem-
perature profile is the same as that in constant-press-
ure flows. In the case of large pressure gradients,
when the ratio S = 4,/6, or 8,/6, = S* Pris not very
large any longer, the quantity S enters into the list of
wall law arguments, so that

oT/oy = (@I (y,. S, Pr),
T,(») = ¢P(ys, S, Pr).

The quantities v, a, §, H are not important within
the range of y values satisfving the inequalities
max (d,, 6,) < y <« min (, H) (see again Fig. 1).
Hence here the gradient law of the following form is
valid :

aT/oy = (@ WP (@), &= y/d, = yyluy. (5)

Note that the function ¢% must be the same for
different types of flow (for the boundary layer on a
plate, diverging or converging ducts of any cross-
section and so on). However, for not very large values
of Z = §/8, = yd/u, this argument must also be pre-
served in the second line of equation (3) and therefore

oTjey = (Qy/u WP &, 2). (52)

If the longitudinal pressure gradient is so large that
9, is of the same order of magnitude as max (6,,5,)
{(but the condition Z > 1 is also fulfilled by virtue of
the requirement that the turbulence must be
developed), then for y « min (5, H)

OT[0y = (/P (&, S, Pr).

In the outer region of the boundary layer where
v > uy/y and y » max (3., 8,), the temperature defect
law must be valid

(4a)

(5b)
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FiG. 1. The scheme of the validity range of similarity laws for the temperature field in the developed
turbulent boundary layer with a longitudinal pressure gradient. The dimensional parameters of the problem
which define the flow in the region under consideration are indicated in square brackets.

T (.)‘) - To o Yy

— = P ) =g (6)
O/ (yH)

This law follows from the dimensionality arguments

and from the assumption about the existence of

o iim oy (. Z Re,) = Y (n,0. )
Z— 0. Re, —~ x
where ¥/ is the function entering into the third line
of equation (3). Thus, as it is noted in Fig. 1, in this
region the friction velocity u, falls out of the list of
relevant dimensional parameters. This falling out is
due to the condition yy/uj » 1 which determines the
outer zone of the thermal boundary layer. It is clear
that the condition yy/uj — oc is equivalent to u, — 0.
At the same time, the temperature flux @, which is
also related to the boundary conditions on the wall,
keeps affecting the temperature profile in this flow
region. The reasons given above also imply the con-
clusion that the physical properties of the fluid have
no effect on the profile T(y) in the flow zone con-
sidered, but this profile can depend on the type of flow.
In the case of weak pressure-gradient flows it can
be expected that the temperature defect law includes
the function of three arguments

oT 9] 8
oy TR py ('I,A H>'

,T(}):T“ = P (,77 Z. ())'
Q3 H) H
It seems clear, at first sight, that in the case when
the dynamic and thermal boundary layers start at the
same point x = 0, the ratio §/H must take a constant
(and, besides, fairiy close to unity) value, so that the
argument 8/H can be simply discarded in all the pre-
vious formulae. This question, however, needs a more
detailed consideration, which is given in Appendix A.
It is explained there that it is reasonable to use the
definition of the thickness H which eliminates the
effect of the molecular transfer sublayer on H. Such a
definition leads to the equations

(6a)

T, (H) = 0.99T,, +0.018(Pr),
B(Pr) = (385Pr'* =1.3)242.12In Pr  (7)

which determine the value of H, and for this H the
assumption made above turns out to be valid, i.e. the
ratio 6/H actually becomes constant for constant-
pressure flows.

The situation is much more compiex for flows with
strong pressure gradients. Here the hydrodynamic
structure of the outer part of the boundary layer
becomes independent at all of the magnitudes of the
wall momentum flux (i.e. of friction velocity) and is
determined by the longitudinal pressure gradient
alone, while the temperature profile in this zone is
kept substantially dependent on the wall heat flux Q.

Obviously, the strong turbulent mixing in the outer
zone of the decelerating turbulent boundary layer con-
siderably decreases the variation of the temperature
profile with y in this region and hence also decreases
the thickness H, whereas strong negative pressure
gradients suppress the turbulent mixing in this region
of the boundary layer and hence produce the strong
dependence of 7(y) on y and the increase of H.

The formulae given above for the temperature pro-
file in different zones of the pressure-gradient bound-
ary layer are much simpler than general equations (3).
but they also contain some unknown functions of
several variables which must be found either from
experimental data or from some approximate semi-
empirical theories. More definite conclusions can be
obtained assuming that there exist overlapping
regions of the asymptotic expansions stated above,
where two different asymptotic representations of the
temperature field are simuitaneously valid. Thus,
assuming that there exists the zone, max (4., ;) «
y « 8, of matching the wall and gradient laws, it is
easy to find that

(yuy/Q)OT/8y = y Py, Pr)
= &P () = —a =const.  (8)

Therefore, the temperature profile is described in
this zone by the logarithmic equations

T, =alny, +p(Pr) (8a)
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T.(y) =alné+p,(Pr,S), p,=p(Pr)+alns.
(8b)

The values of the universal constant a and of the
function f(Pr) (which is determined by the tem-
perature difference between the wall and the lower
edge of the logarithmic sublayer) must not differ from
the corresponding values in constant-pressure flows.
Hence, according to ref. [4], « = 2.12, whereas the
function B(Pr) is given by equation (7). Thus, the
logarithmic law of the temperature distribution
appears to be valid in a certain region of distances
from the wall also in the pressure-gradient non-iso-
thermal flows with not too strong pressure gradients.

Equation (4), which for y, < 4Pr~'/3 has the linear
form T, (y) = Pry, and for y, >» 1 has logarithmic
asymptotic (8a), can be approximated by a single
interpolating formula, e.g. by the formula suggested
in ref. [5], namely :

T (y)=Pry, exp(-0G)
+[2.121In (1 4y, )+ B(Pr)] exp (—1/G)
where G = 10~ *(Pry )*/(1+5Pr® y,).

In the zone of the overlapping of the gradient law,
equation (5), and the temperature defect law, equation
(6), where u2 /y « y « min (8, H), the following equa-
tion must hold :

ErPYPQ) =" P
—(1/2)K? = const. 9)

("*y*?/Q)oT/oy =

where the factor — 1/2 is included for the convenience
of subsequent integration. Thus, the matching of both
these laws yields the formulae

[T, =Tty = —KP|JE+KD (S, Pr) (92)

(T() - T)/QH) V2 = KP [ /n+K (9b)
which can naturally be called the ‘inverse hall power
law’.

Law (9a) was apparently first formulated in ref. [1]
but there K¢, just as « in equation (8), was regarded
to be dependent on the physical properties of the fluid
(that is on Pr). Reference [1] also contains some
experimental data on temperature profiles in the press-
ure-gradient non-isothermal air flow above a plate
that confirmed the existence of a sublayer in which
the temperature distribution obeyed relations (9).
Based on these data, the authors recommended to
take K® to be equal to 2.8 for any values of the
adverse pressure gradient at Pr = 0.7. Afterwards this
‘elegant’ law was pretty well forgotten and, within
the knowledge of the present author, it has not been
discussed and used in the subsequent literature
devoted to heat transfer in pressure-gradient flows,
until ref. [2] appeared where equation (9a) was
deduced by the asymptotic expansion method.
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2.2. Analysis of experimental results

To verify the inverse half-power law, use will be
made of the experimental data given in ref. [6]. Besides
the convenience of processing these data (all exper-
imental results are presented in the form of detailed
tables), the data are also attractive since they provide
the possibility of independent verification of the
relations given above (note that the law under dis-
cussion is not mentioned in ref. [6]). In Figs. 2 and 3
these experimental data on temperature distribution
in the equilibrium (in the sense that the dimensionless
longitudinal pressure gradient (2v/U2)dU,/dx re-
mains constant along the plate) accelerating and
decelerating flows are given as T, = [T, — T(»)]/t, vs
(yy/u2)~ "3, ie. in such a form that the law being
verified is represented by a simple linear relation. For
convenience, the thicknesses of the molecular sublayer
(/o = Pry, =y, = 30) and of the near-wall zone
of the boundary layer (y/é = 0.1) are also shown in
the figures by dashed lines. The figures confirm the
above theoretical reasonings by indicating that the
inverse half-power law for the temperature profile is
valid over a considerable portion, not only of the
decelerating but also, the accelerating turbulent layer
within a wide range of regime parameters. At the same
time, the experimental data analysed do not agree well
with the hypothesis about the constant value of K{"
independent of the magnitude of the longitudinal
pressure gradient. Therefore, following the method
suggested in ref. [3], use will be made here of a more
general (than equation (9)) relation

[T, — Tty = —K(2)[JE+KD(Z, S, Pr)
%)

[T(») - T)/QUH)™"* = KP(Z)/\/n+ KD (Z)
9d)

where K varies with Z for not too large values of
Z.

The main difficulty of such an analysis is the
insufficiency of the available empirical material
summed up, for convenience, in Table 1. This pertains
especially to accelerating flows. The data available for
these flows make an impression that the main purpose
of the authors of experimental works was to study
the limiting case of the turbulent boundary layer
relaminarization disregarding the case of moderate
negative pressure gradients. Therefore, consideration
will be given to the behaviour of K (Z) only for
decelerating boundary layers with a decrease in heat
transfer.

First, an attempt will be made to evaluate the
asymptotic behaviour of this function at small values
of Z from the requirement of a smooth (up to the first
derivative) matching of the logarithmic law, equation
(8a), and inverse half-power law, equation (9a), at a
certain point y = y,. Naturally, this requirement is
based on the assumption that the sublayer dividing
the boundary layer regions, for which the two laws
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Fi6. 2. Verification of the fulfillment of the inverse half-power law for the temperature profile in the wall
zone of a decelerated boundary layer (according to the data of ref. [6]).
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F1G. 3. Verification of the fulfillment of the inverse hall-power law for the temperature profile in the wall
zone of an accelerating boundary layer (according to the data of ref. [6]).

are valid, is very thin; therefore the results thus
obtained are only approximate (however, it seems
natural to hope that their accuracy will suffice for
practical applications). Based on the assumption
adopted, the conclusion can be drawn that
K¢ = 2a(y,/0)'*Z"? when Z <« l. But since the
lower limit of the validity zone for this law must not
differ greatly from the upper limit of the logarithmic
sublayer, where equation (8) is apparently valid,
v, = 0.158. Hence, taking o = 2.12, it is easy 10 obtain
that

K = 157" when Z<«1. (10)

On the other hand, the aforegoing dimensional con-
siderations imply that in strongly gradient flows (for
Z » 1) the function XY must tend to the universal
constant dependent neither on the flow type, nor on

physical properties of the fluid. Unfortunately, at pre-
sent there are no experimental data which allow a
complete verification of the latter theoretical pre-
diction—all the experiments collected in Table 1 relate
to air flows with Pr = 0.7. Nevertheless the available
data cover a fairly wide range of Z values (namely,
1.5 £ Z < 50) which makes it possible to check the
character of the dependence of K{"(Z) on Z.
The data in Fig. 4 are rather scattered but on the
whole they show that for the decelerating flows
K =3 for Zx» 1 (1D
Moreover, the K'Y’ values appear to be close to the
limiting value already at the values of Z = ydju;
slightly above 10, while, according to the experimental
results analyzed in ref. [3], a similar limit for the
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Table 1. Summary table of experimental studies of the temperature field in two-dimensional decelerating and accelerating
turbulent boundary layers on a plate

Characteristics of the boundary layer

No. Notation Reference dP/dx S§=36,/8, =uifyv Z=35/8, = pd/uj Notes
! 2 3 4 5 6 7
1 O )| >0 106-32 10.7-36
2 — 6] <0 266-215 23-5.0 A2 experiment
n >0 403-123 2.2-13.9 A3 experiment
% >0,<0,>0 392-48 1.4-21 A part of AS experiment for
dP/dx > 0
>0,<0,>0 28048 2.3-14.7 A part of A6 experiment for
dP/dx >0
3 — [19] <0 73-31 8-14 Flow relaminarization
4 v M >0 38-31 4548 Points of origination of
hydrodynamic and thermal boundary
layers do not coincide
5 — [39] <0 88-63 12-13.8 Flow relaminarization
6 [11] <0,>0 32-836 0.7-14.8 For the part of experimental data

with dP/dx > 0 succeeding the strong
gradient, which, apparently, causes
flow relaminarization

18}
K2

F1G. 4. The coefficient K vs the parameter Z in the law (9¢) and (9d) by the data of measurements for
decelerated boundary layers. See notation in Table 1. The solid line corresponds to interpolation equation
(12) and the dashed lines correspond to limiting relations (10) and (11).

function K, (Z) in the half-power law for the velocity
profile is only reached when Z = 100.

Based on the limiting relations (10) and (11), the
following interpolating formula can be given

KO =3//(1+4/2). L2

This formula agrees rather well with all experimental
points in Fig. 4 and has correct asymptotic behaviour
at large and small values of Z.

The value K = 2.8, constant at all values of Z,
was suggested in ref. [1] on the basis of the experiment
performed and also in ref. [2] where the same exper-
imental data were analysed. This value agrees well
with the experimental results in Fig. 4 for Z > 10 but
differs appreciably (almost by a factor of two) from
the experimental points for low values of Z.

The same experimental data on the temperature
profiles in decelerating turbulent wall flows allow one
to estimate the additive function in equation (9a). For
this it is sufficient, for instance, to plot the exper-
imental data in the coordinates T, , (yy/u2)~'/2, as it

was done in determining K¥ in Figs. 2 and 3, and to
calculate the mean value of the sum 7, + K¢ 2
(where K9 (Z) is determined from equation (12)) for
all the points within the validity range of the inverse
half-power law. It is clear that the thus obtained K¢’
value corresponds to the segment cut off on the T,
axis by the straight line drawn through the exper-
imental point with the slope determined by relation
(12).

For a rough theoretical estimation of the form of
the function K'(S, Z, Pr) use will be made again of
the simplest assumption about a smooth matching of
the temperature profiles in the logarithmic sublayer
and in the validity range of relation (9¢) at y = y,.
This yields

y2/0 = (K 20)*/Z
and K9 =alnTy+B(Pr)+2a (13)

so that in this approximation K" appears to be depen-
dent only on the Prandtl number and on the following
special combination of S and Z:
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FIG. 5. The coefficient K" vs the values of the parameter

I’y in law (9¢). The solid line corresponds to interpolation

equation (18) and the dashed lines correspond to limiting
relations (17).

K(lu) 2
r,= 2?> S

It should be noted that I'y - S/2 when Z — oc. Thus,
in this case K’ ceases to depend on Z and, in accord-
ance with equation (9a), it is determined by the values
of Pr and S. Besides, it follows from equation (13)
that

K =aln S+A(PH+(2+In2)a for Z> 1.
(15)

Equation (13) can be employed to estimate the func-
tion K¢ only in the case of large S, when there exists
(see Fig. 1) a noticeable layer characterized by the
logarithmic temperature distribution. At insufficiently
large values of S such a layer can be absent; at small
values of S one already observes the matching of
the temperature profile described by the inverse half-
power law with the linear distribution 7, = Pry, of
the mean temperature in the molecular heat condition
layer. In this case

¥3fo = (KPS2Pr? 2z

SZ

T 24+ 2) (14

and K9 =3 PrTy)"%. (16)
Thus, it can be concluded that
KY
2.12InTy+ p(Pr) +const. when Iy > 1
BRETZAED Wi whenT,» 1° (7

The experimental data that were obtained for the
dependence of K¥ on I', for turbulent wall air flows
(Pr = 0.7) by the above method are compared with
the limiting relations in Fig. 5. The first of the limiting
relations (17) agrees well with the experimental results
for I'y > 30, if the additive constant in it is taken to
be equal to 4 (it will be recalled that, according to
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F1G. 6. The coefficient K¢ vs the parameter S in law (9¢).

The dashed line corresponds to the power law approximation

of K{’(S) for near separation flows. For notation see
Table 1.

cquation (7), f(0.7) = 3.8). Note that this value agrecs
surprisingly well with the rough estimate of this con-
stant which follows from equations (13), namely
20 = 4. The experimental data pertaining to the val-
idity range of the second limiting relation (17) are not
available in the literature, but, as can be seen from
Fig. 5, when T’y < 30, the experimental points begin
to depart appreciably downwards from the dashed
curve which corresponds to a logarithmic relation (13).
A comparatively good approximation of the entire
experimental material available is given by the inter-
polating formula

K = S(Pr )" exp (= PrT,)

+Q.12InTy+B(Pry+4) exp (—/(PrTy) (18)
which agrees with both equations (17).

It is useful to compare the relations derived with
the formulae suggested for K¢ in refs. [1, 2]. It was
assumed in both these papers that K depends only
on S. As it was illustrated above, this is true only
at rather large values of Z. The experimental data
available in the literature are presented in the form of
the values of K$’(S) in Fig. 6. In this figure the power-
law approximation K{’ = ¢+ S'* (suggested in ref.
[1)) for the values of K at large values of Z is also
pl6tted for ¢ = 3.6 which is the value of ¢ given in ref.
[2]. Of course, this approximation agrees fairly well
with the above-indicated rather old experimental
results, but deviates markedly from the experimental
points corresponding to large values of S (i.e. to the
cases of moderate pressure gradients). Logarithmic
equation (15) appears to be more successful, when the
value of the constant term added to S(Pr) is taken to
be equal to 1.6 in lieu of the estimated value
(2—1n 2)a = 2.8. However, even in this case the scat-
ter of the experimental points round the approxi-
mating curve is somewhat higher than that in Fig.
5. The authors of ref. [1] also preferred to use the
logarithmic relation of form (15) for K9, but with
different coefficients: k¥ = 2.01n S+4.9.

For a complete description of the temperature pro-
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file in the decelerated turbulent boundary layers it is
also necessary to use the temperature defect law for
the profile in the outer zone of the boundary layer.
The analysis of the data related to this law will be
given below only for the case when the difference
between the thickness of the hydrodynamic and ther-
mal boundary layers is not significant. With the excep-
tion of the results given in ref. [7], all experimental
data on heat transfer in decelerating flows collected
in Table 1 satisfy this condition. According to the
above results (see equations (6) and (6a)), if
8/H = const. = 1, then for moderate values of Z

(T-T,)/Q(9) * = ¢ (1, Z) (19)

or
(T-T)/ty =Z~"¢P (1, 2). (192)

At the same time, at small values of Z the function
¢'P’ on the right-hand side of equation (19a) must be
representable as Z'?-¢,(y) where ¢, does not
depend on Z, since only under this condition equation
(192) for Z — 0 yields the known relation

(T=To)/tx = ¢a(m)

which must be valid for constant-pressure flows.

Based on the analogy with the velocity profile in
the outer zone of a constant-pressure boundary layer,
which can be rather accurately described by the Coles
wake law [8], it seems reasonable to try to apply a
similar law also to the temperature profile in this flow
region. This attempt is based on the conclusion that
the temperature distribution here does not depend
on the value of the molecular Prandtl number. To
approximate the wake function w(z), use will be made
of the Moses polynomial w(n) = 6n>—4y> (see, for
instance, ref. [9]). The resulting formula

(T-T,)/t, = —2.121n n+0.75(2— 6n° + 4n*)
21

(see also ref. [10]) is compared with the experimental
data in Fig. 7 which shows that it agrees satisfactorily
with the data.

In the other limiting case of large values of Z it
is also possible to try to describe the temperature
distribution in the outer zone of the pressure-gradient
boundary layer with the aid of the Coles wake law
with the wake function represented by the Moses poly-
nomial. Here the wake function describes the devi-
ation of the temperature profile from that given by the
inverse half-power law rather than by the logarithmic
law (as it is in the case of the constant-pressure flow).
Therefore, here equation (19) takes the form

(20)

(T—T,)/Q(6)~V* = 3¢~V —1)
+A4Q—6n’+41°). (22)

The value of the constant 4 in this formula can be
determined by comparing equation (22) with the
experimental data from ref. [1] for Z 2 20 presented
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FiG. 7. The defect law for the temperature profile in the outer

zone of a constant-pressure turbulent boundary layer on a

plate. The solid line corresponds to equation (21) and the

dashed line corresponds to the logarithmic asymptotics of

the defect law. 1, 2, 3, refs. [19, 40, 41], for Pr=0.7, 5 and
50, respectively ; 4, ref. [18], Pr=0.7.

in Fig. 8. A good approximation of these data by
equation (22) is attained for 4 = 3.5.
It is also easy to set up the interpolating relation

T-T, 212 3Jz (1
R —
s 1+Z V" z\ gy
1543502 ., .,
—ZWZ—_(Z—&’ +4n°) (23)

which has a correct asymptotic behaviour and agrees
with all the results given above.

In conclusion, a list of formulae will be presented
which permit one to calculate the temperature profile
in decelerating turbulent boundary layers within a
wide range of operational parameters and physical
properties of the liquid, but which have been verified
only for one value Pr >~ 0.7:
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F1G. 8. The defect law for the temperature profile in turbulent

boundary layers with a strong adverse pressure gradient. The

solid line corresponds to the defect law, equation (22), at

A = 3.5 and the dashed line corresponds to its asymptotics
(to the inverse half-power law).
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Here G = 10" %(Pr v, )*/(1—=5Pr” y.), B(Pr) = (3.85
X Pr'? =132 +2.121In Pr, (T, —T,)jty = (¢:/2)'7/S1,
whereas K{" and K¢ are given by equations (12)
and (18), with y, being the ordinate of the inter-
section point of the wall law, equation (24a), and
the inverse half-power law, equation (24b), and y,
of laws (24b) and (24c¢). If the intersection points
determining the values of y, and y, do not exist
or y, >y, then the valuc of y,, is calculated,
which corresponds to the intersection of the wall
law (24a) with the temperature defect law (24c),
and the temperature profile is approximated by the
combination of these two relations.

Comparison of these formulae with the exper-
imental data from refs. [1, 6] in Figs. 9 and 10 dem-
onstrates the degree of accuracy of the given relations.
The discrepancy does not exceed 5%, i.c. falls within
the accuracy limits of the experiments under con-
sideration. It is clear, however, that a complete veri-
fication of the suggested formulae requires exper-
imental data on heat and mass transfer in decelerating
wall flows with different physical properties to com-
pare them with the data for gas flows.

(solid lines) temperature profiles based on the data of ref.

[6].

2.3. The universal law of heat and mass transfer in
decelerating turbulent boundary luyers

A very attractive aspect of the scheme of reasoning
used is the simplicity with which the general heat and
mass transfer law can now be derived. For obtaining
such a law, it suffices to sum equations (9¢) and (9d)
that represent the inverse half-power law (valid in the
upper part of the gradient sublayer) and the tem-
perature defect law (valid in the outer zone) ; in equa-
tion (9d), just as above, Q(yH) "'~ on the left-hand
side is replaced by Q(yé) "7, assuming that
o/H = const. = 1. On making such a summation and
taking the apparent equality (7, — 7,)/1, = \/(¢,/2);
St into account, one obtains

Va2

=- . (23)
K(m +K‘“J" "Z

This formula must be valid for both the accelerating
and decelerating wall flows, but, as was demonstrated
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Fi6. 11. The function K (Z) in the heat transfer law, equa-

tion (25), for flows with an adverse pressure gradient. For

notation see Table 1. The solid line corresponds to equation
(26).

above, only for the latter case are there some exper-
imental data which enable its verification.

For the case of a decelerating flow, the function
K9, entering into equation (25), can be approxi-
mately determined from equation (18): as regards
K®, this is the universal function of the parameter Z
that appears in equation (9d) and which musttend toa
constant for Z — oo (see equation (9b)). The function
K® can be estimated very roughly by assuming that
the inverse half-power law (9d) is valid up to the upper
edge of the thermal boundary layer (= 1). This
assumption results in K9 = — K, implying that for
Z « 1, the function K9 is proportional to —Z ™V,
whereas, when Z — oo, it tends to the constant close
to — 3. According to the available experimental data
given in Fig. 11, the experimental values of the func-
tion K'® are very scattered which, of course, should
have been expected, since K¢ =./Z[(T,—T,)/
t,—KP] represents a small difference of large
quantities which is multiplied additionally by a
relatively large factor \/ Z. However, the latter circum-
stance also has a positive side, since, owing to if,
even marked variations in K¥ exert only a slight
effect on the predicted value of Sz. On the whole
the data collected in Fig. 11 do not contradict the
above conclusions about the form of the function
K'©(Z), except for the fact that, by these data, the
limiting value of K% can never be negative for Z >» 1.
An acceptable approximation of the experimental
data can be obtained, for instance, by setting

K9 = 5(1-1//2). (26)

The predicted values of the dimensionless heat
transfer coefficient, which are based on equations (18),
(25) and (26), differ from the experimental values on
the average by no more than 5%, whereas the
maximum difference is of the order of 10%. The
examples of a comparison of calculated and
measured values of St are presented in Fig. 12.

Also of certain interest is the limiting form of the
heat transfer law (25) for y - co. Here, when I'y —
S/2
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(solid lines) values of the Stanton number on the basis of the
experiments of ref. [1] (a) and of experiments of ref. [6] (b).

K = 5((Pr 8)/2)' exp ((— Pr 5)/2)

+[2.121n (S/2) + B(Pr)+4] exp (—2/(S Pr))
and K¢ — 5. Therefore, in this case
St = (U Ju ) [KP+ KP[J Z] - SUJJ (76)

+K9/ Qe

Since U,/\/(y8) = 6.3 at large Z (see equation (26) in
ref. [3])

S =32+ Qfe) KP(S) for Z»1. (27)

When Pr >» 1, with (Pr) = 14.8Pr*? starting to pre-
vail in the expression for K¥, the above equation
simplifies further to

St~ = 14.8/(2/c)Pr*? exp (—2/S) for Pr»1

whereas when S > 2, it acquires the form of the fol-
lowing relation valid for constant-pressure flows:

St = 0.067+/(c;/2)Pr=2>.

The only difference is that the value of the friction
coefficient ¢; for strongly decelerated wall flows
appears to be much smaller than that for constant-
pressure or weakly gradient flows.

It also follows from relation (27) that, for a fixed
value of Pr (i.c. for instance, for heat transfer in gas
flows), an increase of the adverse pressure gradient
results in a decrease of the local heat transfer
coefficients. At the same time, here the Reynolds anal-
ogy coeflicient St/(¢;/2) grows. Indeed, it is not diffi-
cult to infer from equation (27) that at large positive
pressure gradients

St/(cy/2) = 6.3./Z/KP(S) (28)
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and, since KY changes here comparatively slowly
(only logarithmically), the magnitude of the ratio in
question increases rapidly

Stfe)2) ~JZ

despite the decrease of Sr. This inference is in quali-
tative agreement with the experimental data of ref.
[11] and with the approximate calculations given in
ref. [12].

3. TEMPERATURE FLUCTUATIONS IN
PRESSURE-GRADIENT BOUNDARY
LAYERS

While the available literature contains some data
on the temperature profiles in pressure-gradient tur-
bulent flows, which are suitable for the verification of
theoretical conclusions, there are almost no data on
statistical characteristics of the scalar field (tem-
perature or concentration) fluctuation in such flows.
Therefore, the forthcoming theoretical conclusions
mostly take the form of predictions, which can be
compared with some data only to a very small degree.

(1) Based on the moving-equilibrium hypothesis
which was discussed above (see also ref. [3]) and,
moreover, assuming that

max (d,,dy,) < J, < min (6, H)

(see Fig. 1), one can formulate the corollaries
which follow from the application of the general dimen-
sional arguments to the simultaneous multi-dimen-
sional probability density of the normalized tem-
perature (0/t, or 6./(yH)/Q) and velocity (ufu, or
u/\/(y8)) fluctuations at arbitrary n flow points
X, ={x,yi2)..., X, = (X, ¥ 2,).- This prob-
ability density depends on the following dimensionless
coordinate ratios:

Xa— X, Xy =Xy Zy—2Z, 21 V2 Yn
s T R S,
M1 Mi i Y Vi M
(29

and also on the ratio y,/d, (or y,/dy, or y,/H), char-
acterizing the relative distance of the first point from
the wall. Besides it also depends on the dimensionless
combinations

Z =8[58, = ydjuy. Re, = 8/0, = duy/v,
6/H, Pr=20,/6,=v]a

that determine the flow conditions and the physical
properties of the fluid.

The above relations between the characteristic
length scales allow one to consider the analyzed tur-
bulent boundary layer as a thermally and dynamicaily
developed one and, consequently, to eliminate the
parameter Re, (and Pe,) from the list of relevant
parameters. Moreover, it follows from these relations
that, there exist zones in the considered boundary
layer, where the temperature profile is described by
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the logarithmic and inverse half-power laws. It is easy
to understand that in the first of these zones (i.e.
in the logarithmic sublayer) all the constant-pressure
relations summarized in Appendix B must be valid.
The analysis will therefore be confined to the charac-
teristics of temperature fluctuations in the gradient
zone and the outer part of the boundary layer, where
the effect of the longitudinal pressure gradient is
displayed.

In the sublayer where the inverse half-power law is
valid, i.e. where §, « y « min (J, H), the regime of
temperature fluctuations is governed only by two-
dimensional parameters: 7 and Q. Now, it will be
assumed that the considered set of points is localized
in a small volume within this sublayer, so that
(IX;—X,|) «min (6, H) and 6, <y, « min (5, H).
Then the joint probability density, normalized by the
appropriate combination of the parameters (0, 7, and
one of the normal coordinates y;, can depend only on
ratios (29), y,u,/v, and Pr but is independent of the
type of flow, i.e. is the same for flows in tubes.
channels, boundary layers on a plate, etc. Besides, if
the selected points are not too close to each other (so
that |X,—X;| » max (J,, 8,) for any i and j), then
the molecular constants of the fluid also do not affect
the joint probability density, and therefore the list of
the dimensionless parameters affecting this density
includes only ratios (29).

The horizontal homogeneity of the considered two-
dimensional flow and its symmetry with respect to the
x-y plane lead to the following additional require-
ment: the probability density must be invariant with
respect to the sign reversal of velocity components
w(X,), i =1,..., n. Moreover, this density must bc a
universal function of its arguments, i.e. it must be
independent of both the flow type and fluid properties
(but, of course, it can be different for accelerating and
decelerating flows). For instance, in the case of the
one-point density

(yOY)p(6.u, v, w)
= PP (0 )/ Q. u/] (53): 01 (1), wi (73))

for wul/y <y« min(3,H) (30)
*/7

where P is a universal function of four variables
and u, v, w are three components of u.

For the even more simple one-dimensional prob-
ability density p(6) of temperature fluctuations at the
point X = (x, y, ), which is located within the inverse
power-law sublayer, the following relation can be
easily obtained :

(QINGy)p(0) = PE (0 (10)/0). (31)

However, the data needed to verify this simple relation
are also lacking until now.

(2) The dimensional analysis also permits one to
write out relations for one-point moments of tem-
perature fluctuations and mixed moments of tem-
perature and velocity fluctuations. It appears that
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Ourvw!y QAU = GEIE)
for max (4,,8,) <« y«min(6,H) (32a)

kv (1, 0/ H))
for y»34,

<9kumvnw1>/Qk (,’)H)(m+n+1—-k)/2 -
(32b)

while in the overlapping layer of these two asymptotic
expansions (i.e. in the layer J, « y « min (4, H),
where the inverse half-power law is valid for the tem-
perature profile) the following relations are true:

Fumv"w') = alp @ (ry) O (320)

where af),, is a universal constant. The exact limits of
the validity layer for (9a), (9b) and for various
relations (32c) may, of course, differ. The constants
af),, must be independent of both the physical prop-
erties of the fluid and the type of pressure-gradient
flow (but their values can depend on the sign of
dP/dx). It is also clear that they are equal to zero for
all the odd values of /. The value of these constants
can be estimated from experimental data or from some
semi-empirical closures of the dynamic and thermal
equations. For the second-order moments of velocity
fluctuations in the gradient-sublayer equations (32)
were verified in ref. [13]. As for the temperature fluc-
tuations it will be, apparently, more simple to verify
theoretical predictions for the variance, asymmetry
and flatness factor of temperature fluctuations in this
sublayer

O = aPE for
SP = <6°)/<6°) = aP jaP*’* = const.,
FP = (/{05 = aP 1aP? = const.

uljy « y « min (8, H),

(33)

and also for the second-order mixed moments of tem-
perature and velocity fluctuations

{ub>]Q = a¥lye = const.

and <p8>/Q = af},, = const. (34)

It is worth noting that the latter relations have the
same form in the constant-pressure flows, but the
values of the constants in formulae (33) and (34) can,
of course, differ from those related to flows where
dP/dx = 0 (see Appendix B).

Experimental data related to temperature fluc-
tuation moments in the pressure-gradient flows are
available only for the moment in the first line of equa-
tion (33). Measurements of o,/t,,, where o, = (§2)12,
conducted in a strongly decelerated air boundary layer
on a heated plate [7] are presented in Fig. 13 in the
form of the dependence of (/(yy/Q))s, on &. They
demonstrate that, in accordance with the theoretical
predictions, (\/£/,)a, = const. = 1.25. Hence af’ =
1.6, and Fig. 13 also shows that the region, where
the profile of ¢,/t, obeys the inverse square root
law, can be described by inequalities (ul/y)
<y<04H.

(3) A vertical profile of the temperature dissipation
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Fic. 13. The profile of the dimensioniess r.m.s. for tem-
perature fluctuations in the gradient sublayer according to
the data of ref. [7].

N(y).= a¥. <(@0/0x)">

in the gradient and outer zones of non-isothermal
turbulent flows is determined by the relationships

N(y) = (Q*/u3)98P (O
for max (4,,6,) <« y < min (8, H) (35a)
N() = (@ OH PGP, 6/H) for y >4,

(35b)

In the overlapping layer of these asymptotic expan-
sions (if such a layer exists), the following equalities
must be valid:

W ONQING) = E29FP ()

=3P (n,6/H) = off) = const.
so that
N() = 2P OV (7°)
for wify«y<«min (5, H). (35
Similar arguments can also be applied to the deri-

vation of the following formula for the turbulent
energy dissipation:

1322

&(y) = aPy¥2y12

when  ulfy « y « min (8, H).
(36)
The comparison of equation (36) with the data
described in ref. [14] yielded the estimate ¢® =~ 2.4.
(4) Interesting inferences can also be made about
the spatial spectra of temperature fluctuations and
corresponding correlation functions. For example, the
longitudinal spatial temperature spectrum Eg(k, ),
which depends on the wave number k and coordinate
¥, is given for a pressure-gradient flow by the relations

Eps(k, y) = (Q*/MEG® (ky, &)
for max (8,,6,) « y «min (5, H) (37a)

Egp(k,y) = (Q* V) EG" (ky,n,6/H) for y>34,.
(37b)
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There, for 6, « y « min (3, H) oo ° og
Ew(k, v) = (Q7/7)el) (k). (37) 10° |- °
Let us now consider the behaviour of the function St 12 (hy) 2
eg (ky) for the wave numbers k belonging to the / |
inertial-convective range. The upper limit of this range o' - "a o, Vy
corresponds to the length scale dx = (v/&)'* and .8 |
then the corresponding temperature microscale ’\ |
o ' 4 . . . . ~ o
dy = (a’/e)""*, which, in the considered layer, is of the 3/ .
form ™ 100} "
x X X X x X .
. L e 1 J774 -1 £ A -5/3
dx ~ (u)(S/JEH 028 0016 1.0 % 9° W)
Xy
X ) 75 0043 2.1 n
and 8, = (@/u) (Pr SHYE. (38) ) ot !%
As to the lower limit of the range, it must correspond X 750 059 208 'n
to the length scale which is much smaller than é and H. \
For thermally and dynamically developed turbulence !\‘_
. 1072 L | i L
(Re, > 1and Pe, > 1) the corresponding range of the 1072 0 100 10!
values ky includes the values satisfying the inequalities ky

ky « 1 and ky » 1. For the locally isotropic small-
scale turbulence k > v~ ', and here the Obukhov-Cor-
rsin —5/3 power law is valid. Hence Ey(k, y) ~
Ne™ k=% and, consequently, eff) ~ (ky)~ ™" for
ky > 1. In the other limiting case where ky <« [, it
can be assumed that e$’ (ky) tends to the limit

G = e (0) = lim_ eff) (k).

If this assumption is true, then for the sublayer, where
the inequalities uZ/y « v « min (8, H) are satisfied,
the following limiting laws hold true

Cif (ky) ™
G

for ky » 1

(V/QZ)E(w(k,V) = { (39)

forky« 1’

Thus, unlike the logarithmic sublayer, where (see
Appendix B) for long-wave perturbations the spec-
trum of temperature fluctuations satisfies the —1
power law (B8), in the gradient sublayer, where the
inverse half-power law is valid, the spectrum E,, does
not depend on the value of ky for ky « . Similar
arguments can be applied to the derivation of for-
mulae for the velocity fluctuation spectra E;{k) (wherc
i=1,2,3, and u, = u.u> = v, u; = w) in the gradient
sublayer

L CP(ky) * forky » 1 7
) Eutky) = {G}F)(ky)  forkyect 40
and also to the Reynolds stress cospectrum

(377) " Enlky) = GVi(ky) * for ky<« 1 (41)
and the velocity and temperature cospectra

(0y) 'Eylky) = GPky)™' for ky«1 (42)

where i = 1, 2.

Equation (40) for E,,(ky) was derived and verified
in ref. [14] where the approximate values of the uni-
versal constants CP) = 0.9 and G}} = 1.6 were also
obtained.

F1G. 14. The longitudinal spectrum of longitudinal velocity
fluctuations [7] in the gradient sublayer (¢ = 1. 2.1, 5.2) and
outside of it (3 = 0.59).
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FiG. 15. The longitudinal spectrum of normal velocity fluc-
tuations [7] in the gradient sublayer. For notation sce
Fig. i4.

Figures 14-18 give the measured values of the spec-
tra and cospectra E,,, E,, E,. Ew, and E, in an
equilibrium decelerated boundary layer with heat
transfer studied in ref. [7]. The parameters of the
considered flow (Z = 45 and S = 35) show that in the
cross-section measured (x = 955 mm) the flow state
was close to separation. An appreciable difference
between the thicknesses of the thermal (H = 68 mm)
and dynamic (6 = 93.3 mm) boundary layers in the
flow cross-section studied does not affect noticeably,
as was explained above, the characteristics of tur-
bulence in the gradient sublayer.

The velocity fluctuation spectra measured in ref. [7]
agree satisfactorily with theoretical equations (40) and
(41). Here the coefficient G'P) = 1.2 turns out to be
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Fi6. 16. The longitudinal spectrum of Reynolds stress [7] in
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Fic. 17. The longitudinal spectrum of temperature fluc-
tuations. For notation see Fig. 14.

slightly different from the estimate obtained
previously, whereas the values CP) = 0.9 and C®)
= 1.2 together with a®® = 2.4 lead to the value of the
universal Kolmogorov constant C = E,/s¥*k =5 ~
0.5 which is presently assumed to be the most re-
liable. These experimental data also allow an evalu-
ation of the universal constants G§ ~ 1.4 and
G = 0.3. It must also be noted that the maximum
extent of the range, where the ‘—2 power law’
(second line in equation (40)) is valid, is observed at
the proximity to the wall, where, as a rule, the ‘—5/3
power law’ is almost unperceptible. However, the
‘—5/3 power law’ is displayed quite distinctly on the
outer boundary of the gradient sublayer (at ¢ = 5.2)
and outside of it (at y/é = 0.6).

The spectra Eg(ky) and the cospectrum E,,(ky) do
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Fic. 18. The cospectrum of the temperature flux in the
decelerated boundary layer. For notation see Fig. 14.

not contradict theoretical conclusions either, though
the scatter of the data in Figs. 17 and 18 substantially
exceeds the corresponding spread in the data on vel-
ocity fluctuations. Thus, the estimation of the con-
stant G in equation (39) from the experimental
results obtained at the points y/6 = 0.016 and 0.043
yields G = 4, whereas the data at y/6 = 0.15 lead to
the estimate G = 2.5.

In the validity region of the —5/3 power law (for
ky 2 0.5) one obtains C§ = 0.5, i.e. for oy = 1 the
following estimate of the universal Obukhov—Corrsin
constant Cr = Ege/Ne™''? is obtained C; 2 0.7. This
estimate agrees well with the data of the most reliable
measurements (see ref. [42]).

The accuracy of the estimate G ~ 0.2 (see Fig.
18) is apparently rather low, but at present there are
no other experimental results permitting the esti-
mation of one or other of the coefficients given above.

(5) For the second-order longitudinal correlation
function

Roo(r,y) = <B(x+r,y,2)0(x,,2))
the following equations can be obtained :
Roo(r,y) = (Q/us)*R*P(rfy, &)
for max (,,0,) « r,y <« min (6, H) (43a)
Reo(r,y) = (Q*[yH) RGP (r[y, n, 6/ H)
for r,y>»4, (43b)
and
Roo(r,y) = (Q*[y)RP (r]y)
for 6, «r,y «min (5, H). (43)

The range of variations in the argument of the latter
function is given by the inequalities
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max [(y, \/é)\ 0, s \/é Pry- 3,/4]
« rly « min (8/y, H/y)

and for a dynamically and thermally developed tur-
bulence it includes the values satisfying the inequali-
ties r/y > 1 and r/y « 1. For small values of /) with-
in this range the Obukhov ‘2/3 power law’ [13] is
valid and hence

RP (r]y) = <O (/0D —rP (r/y)*?

where r$ is the universal constant simply related to
.
For r/y » 1, the assumption about the existence of

(44)

lim R{(r/y) = af’ = constant
riy — o
leads to the conclusion that here

O +n0(x0)/t5 = af [&

(cf. equation (B11) valid in the logarithmic sublayer
forriy » 1).

(45)
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APPENDIX A. THE THICKNESS OF A
TURBULENT THERMAL BOUNDARY LAYER

The thickness of a dynamic boundary layer is usually
defined as the distance from the wall to the point where the
mean flow velocity U{6) is equal to some fixed part of U,
{e.g. one of the most common definitions of é is based on
the relation U(8) = 0.99U,). However, the thickness H of a
thermal boundary layer, even when heat can be considered
to be a passive admixture, depends not only on dynamic
characteristics of a boundary layer, but also on fluid prop-
erties (first of all, molecular Prandti number). This depen-
dence is especially significant for Pr > 1, when the main heat
transfer resistance is concentrated in a very narrow wall
region. If, by the analogy with the definition of 5, H is defined
with the aid of the relation T, — T(H) = 0.9%T, —T,), then
at Pr» 1, the thickness H will be much smaller than §.
However, it is natural to think that the thicknesses § and H
must have the same order of magnitude since both of them
determine the value of y where the turbulent mixing becomes
negligible. Therefore, it seems natural to exclude from the
consideration the sublayer of molecular heat transfer in the
definition of the thickness H.

An empirical interpolation formula for the function f(Pr)
on the right-hand side of equation (8a) is given in ref. [4].
This formula is based on the analysis of a number of measure-
ments of temperature profiles in boundary layers; it has a
correct asymptotic behaviour at Pr>» 1 and Pr « 1 and can
be written in the form

B(Pr) = (3.85Pr3 —1.3)2+2.12In Pr (AD

(here some small modifications of the original equation
inspired by the most recent data are taken into account).
Equation (A1) may be used for the following estimate of the
temperature difference between the wall and the upper edge
of the molecular heat transfer sublayer (of thickness A):
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[Ty =T/t = B(PY), te = Qfus. (A2)

The thickness A can be defined, for the example, as the
distance from the wall to the point where the eddy thermal
diffusivity & becomes equal to the molecular thermal diffu-
sivity. The results of the statistical analysis of the exper-
imental data on mass transfer at Pr > 1 described in ref.
[16] show that near the wall g5/v = 6 x 107 *(yu,/v)*. Hence
A 2 12Pr~"3(vfu,) for Pr» 1. According to this definition
of A, it is easy to show that the same estimate of A proves to
be valid also in the case of heat transfer in gases (i.e. for
Pr ~ 1), where A has the order of 10(v/u,). Assuming that
the temperature profile is given by the linear equation
T, =Pry, for y<A results in T, (A)=[T,~T@A)Y
ty = 12Pr¥? when Pr 1; this estimate agrees satis-
factorily with equations (Al) and (A2).

The exclusion of the wall sublayer of thickness A from
consideration makes it reasonable to base the definition of
H on the relation T{(A)— T(H) = 0.99]T(A)—T,]. Accord-
ing to equation (A2) this relation Jeads to the equation

T, (H) = 0.99T,, +0.018(Pr) (A3)

which gives the estimate of H the independence of which of
Pr is very weak.

For the logarithmic velocity profile the dimensionless vel-
ocity at the top of the viscous sublayer is just a constant
(independent of Pr) of the order of ten. Therefore, the
exclusion of the viscous sublayer does not considerably affect
the estimation of the thickness of the dynamic boundary
layer. In fact, the relation U, (8) = U(d)/us, which is anal-
ogous to equation (A3), has the form

U, (3) = 0.99Y,, +0.1. (A4)

In the developed turbulent boundary layer U,, = (¢;/2)~"?
is very large, and hence equation (A4) practically does not
differ here from the usually used equation U, (6) = 0.99U,..
However, in the case of the thermal boundary layer, where
the molecular Prandtl number plays an important role, the
situation is quite different.

An experimental determination of H, is often rather
difficult (especially when Pr is large) ; therefore it is desirable
to replace H by some more convenient length. The simplest
(and most easily measured) length scale is the distance x of
the given cross-section from the front edge of the plate (or
from the point of the boundary layer turbulization). The
equation expressing J in terms of x was given in ref. [17] for
the constant-pressure turbulent boundary layer ; it is justified
by the dimensional analysis and has the form

défdx = a(u,/U,) (A5)
where the constant a was found to be close to 0.3 [3, 20]. If
the dependence of H on Pris neglected, the arguments which
lead to equation (AS) can also be applied to the derivation
of the similar equation determining the dependence of the
thickness H of a thermal boundary layer on x. This equation
has the form

dH/dx = (ux/U,) (A6)
where the coefficient & can differ from 4, but hardly by much.
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from the experimental data of : 1, ref. [18]; 2, ref. [6]; 3, ref.
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Note that according to equations (A5) and (A6) the thickness
d und H are proportional to each other if the dynamical and
thermal turbulent layers begin to develop at the same point
(e.g. at the front edge of the plate).

The experimental data from refs. [6, 18, 19] related to
the development of thermal boundary layers in constant-
pressure flows of different fluids (with 0.7 < Pr < 64) are
given in Fig. Al. The data given in this figure agree well with
the conclusion about the proportionality of H to ¢ and show
that » = 0.45 and hence H/d = bla = 0.45/0.33 = 1.3,

APPENDIX B. CHARACTERISTICS OF
TEMPERATURE FLUCTUATIONS WITHIN THE
LOGARITHMIC SUBLAYER OF A CONSTANT-

PRESSURE BOUNDARY LAYER

It has already been explained in this paper that the
relations for the temperature fluctuations valid within the
logarithmic sublayer of a constant-pressure boundary layer
are valid also within the pressure-gradient boundary layers
if max (d,, 0,) « y « 0,. Therefore, such relations are quitc
interesting for the problem studied in this paper and it is
reasonable to consider them here in short (see also refs.
[20. 36]).

The corollaries from the dimensional analysis given at the
beginning of Section 2 of the present paper can, of course,
be directly applied to the logarithmic sublayer where they
have especially simple form. In particular, if min (3, H) »
> max (d,, d,) then the probability density p(f) of tem-
perature fluctuations ¢ at the point x. v, z must have the
form

15 p(0) = Py(0]ix) (BI}

where P, is a universal function of one variable. For one-
point moments of temperature fluctuations {(f*)» and mixed
moments of temperature and velocity fluctuations
(0% w"y in the logarithmic sublayer the following sim-
plified form of equations (32c¢) and (33) must be valid:

(B2)
(B3)

{O*>ity = a, = const.
(P um e WD it = ay,,, == const.

Here g, and a,,,, are universal constants independent either
of the flow type or of the physical properties of the fluid.

However, in the thicker wall region 3 « min (3, £/) (which
includes the molecular conductivity sublayer) the values of
the one-point moments are not universal constants but can
depend on the distance from the wall and physical properties
of the fluid. For example, in this region {0771, =
f(y,, Pr), where f is a universal (i.e. independent of the
flow type) function of two arguments Prand y, = y/é,.

Some experimental data related to the second moment of
temperature fluctuations and to the cocfficient of correlation
R = <ul>]({u>{d*>)"? between the temperature and
longitudinal velocity fluctuations in the air flow (Pr=10.7)
along a smooth wall are shown in Fig. B1. The experimental
points in Fig. Bl are rather scattered but on the whole the
results of the measurements of (0°>"*/t, in tubes, channels,
and boundary layers on a flat plate clearly cluster round a
single curve which. for 1, > 100. coincides with the horizontal
straight line (0°>"7/1, = 1.3. Thus, Fig. Bl shows that
a, > (1.3)? 2 1.7 and also permits one to suggest an empiric
equation for f, (1. 0.7) indicated in this figure.

For the verification of the universality of the constant «.,
the data on the distribution (0> "?/1, within the logarithmic
sublayers of flows of fluid with physical properties different
from those of air can be used. Such data are available for
flows of mercury (Pr=0.026), water (Pr=1510), cth-
vleneglycol (Pr = 10-30) and lubricating oil (Pr = 50 100).
Some of these data (including the data for air flows too) are
given in Fig. B2 where the uniform distribution of coor-
dinates along the axis is used (such a distribution in contrast
to the logarithmic distribution used in Fig. Bl does not

B. A. KADER

conceal the scatter of experimental points). In spite of con-
siderable scatter of the points (partially averaged in Fig.
B2) they do not contradict the assumption that the value
£0*%' 21, in the logarithmic sublayer depends: neither on
Pr (within the range covering more than three orders ol
magnitude) nor on the type of the flow and is close to 1.3
The measurements of mixed moments of temperature and
velocity fluctuations can be found just in a few papers and
they correspond mainly to the second-order moments (i.c.

to the cases where k +m+n+{ = 2). Clearly a4, = — !l and
a0y = 0, but for the determination of the universal constant
)9 10 cquation (B3) the experimental data arc needed.

Such data are given in Fig. Bl for the case where Pr = 0.7
The data agree with the assumption on the independence of
R, of v, within the logarithmic sublayer and show that here
R, = 0.7, ic. dypg = R0 Y)Y Plugty = 0.7
1.3x2.2 = —2.0. Note that this estimate of ¢ ,,, is con-
siderably lower than the atmospheric estimates of the
same constant (sce ref. [20]). Thus, in rel. [20] the esti-
mate a,,9, = —3.5 is given as the best fit to the atmo-
spheric data. It is worth noting, however. that the atmo-
spheric estimates of the constants {u*)/uz and, especially.
{07/ t; exceed considerably the laboratory estimate of thesc
constants ; therefore the value of the correlation coeflicient
R, deduced from the atmospheric measurements proves
to be quite close to the value given by the laboratory
measurements.

The value of the correlation coefhicient R, i the
logarithmic sublayer can be easily calculated from the
known experimental data: R, = (et ((p7y07n' 7 x
— (1< 83y ' 0.7 0t can be seen that it is close o the
value of R,.. However, the direct experimental measurements
of R, in the logarithmic sublayer are quite scattered. Thus, i
was found in ref. [22] that in a tube flow R, = —0.8 for
Re = 32.5x 10" and R,, = —0.65 for Re = 260 x 10°, while
for an air boundary layer on a plate, it was found in refs. {18,
25} that Re,, = —0.6. Moreover, the tube flow measurements
described in ref. [23] resulted in the estimate R, = —0.4.
Therefore, the additional careful measurements of R, are
necessary, The asymmetry S, = ((°Y/(07>*? and Ratness
factor £, = {0*>/{0*>* of the temperature fluctuations are
the most interesting higher-order moments of 8. In the log-
arithmic sublayer

Sy = wyiay” = const., F, e agiaz = const. (B4j

Some experimental data on these characteristics are shown
in Fig. B3. Most of these data refer to air flows in tubes,
channels and boundary layers ; they give rise to an impression
that within the logarithmic sublayer S, differs from zero only
slightly and 2.2 < F, < 2.8 (as the first approximation one
can use the estimate F, = 2.5). To verify these conclusions.
the averaged results of measurements of S, and F, in the
logarithmic sublayer of flows of some other fluids (namely.
water, lubricating oil, and mercury) arc also shown in Fig.
B3. These data agree with the above-mentioned estimates
ajat? = 0(e gy = 0)andasfad = 2.5(ic.a, = 4.2). Note.
however, that the data shown in Fig. B3 are quite scattered
(apparently because of insufficient accuracy of the measure-
ments of the third- and fourth-order moments) ; therefore the
estimales given above must be considered as only preliminary
ones.

The similar dimensional arguments can be applied to the
vertical profile of the so-calied ‘temperature dissipation™. i.c.
rate of molecular dissipation of (6°)/2

/ \
N = u< S (@0iex)" ;.

According to ref. |36}, within the logarithmic sublayer
N(p) = auati/yv) (B5)

where x is the same coeflicient which enters into the log-
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ref. [24] (air in a plane channel); 9, ref. [26] (air above a plate); 10, ref. [27}; 11, ref. [30] (air in a pipe) ;
12, refs. [28, 29] (air in a pipe and a plane channel).

arithmic law (8) of the mean temperature distribution, i.e.
o212

Finally, consider the longitudinal spatial spectrum of tem-
perature fluctuations Eg(k, y) measured by a number of
experimentalists.

For the range of wave numbers k& satisfying the inequalities
min (6, H) » k™' » max (4,, 8,), the spectrum Eg(k, ) in
the logarithmic sublayer has the form

Ep(k,y) = 3k eg(ky) (B6)

where eg(ky) is a universal function. Assuming that the
contribution to {6?) of the long- and short-wave com-
ponents of the temperature field with wave numbers beyond
this range can be neglected, we obtain from (B6) the relation

87 = f " Eulk, ) dk

=11J; (ky) ™ 'eqa(ky) d(ky) = axti.

Hence {8°)/t} = a, is a universal constant ; this conclusion
has been already formulated above and it agrees with the
experimental data shown in Figs. B1 and B2.

In the case of a fully developed thermal boundary layer
the range of wave numbers where equation (B6) is valid
includes the values of k satisfying both the inequalities ky > 1
and ky « 1. If the first of these inequalities is valid, then
according to Obukhov [15] and Corrsin (see ref. [42]) the
function ez(ky) and the spectrum Eg(ky) must have the form

Egy(ky) = Cotiy= Pk~
and  ep(ky) = Coky)~%. (B7)
It is seen that Eg(k, y) is proportional to y~° for ky » 1.
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F16. B3. The asymmetry and flatness factor of temperature fluctuations in the wall zone of the boundary
layer. Notation is given in Fig. B2. The following data are added ; 3, ref. [33] (a water flow in a pipe) ; 7,
refs. [34, 35] (a water flow in a plane channel).

In the case where ky « I, but & >» min (6~ ', H~') the
wavelength of the considered spectral components is much
greater than the distance y from the wall. It seems natural
to assume that the statistical regime of such large-scale com-
ponents of the temperature field does not change at moderate
vertical shifts and therefore the spectrum Ep(k) does not
depend on y for ky « 1. This assumption was formulated in
refs. {37, 38] in application to longitudinal velocity spectra
(and without the indication of the wave number range where
itis valid) ; it is equivalent to the assumption on the existence
of a finite non-zero limit

klvi{ﬂo egolky) = e4(0) = G, = const.
Then
Egik,y) = Gorzhk ™!

where G is a universal constant.

The existence of the wave number range where the tem-
perature spectrum satisfies equation (B8) was discovered by
some experimentalists (see, e.g. ref. [23]) who did not try to
justify the law and indicate the limits of the range of its
validity. Note, however, that the data confirming the law
{B8) are much less extensive than those related to the similar
law for the velocity spectrum and almost all these data are
based on the measurements in air flows (Pr = 0.7). Exper-
imental values of E,(k, y)/rt; taken from refs. [18, 23, 24]
are shown in Fig. B4, It 1s seen that the data confirm the
validity of the —1 power law (B8} and of the —5/3 power
law {B7) for two ranges of wave numbers k and alse show
that both the ranges are rather wide and the transition zone
between them is so narrow that in a first approximation
these two ranges can be considered to adjoin to each other.
According to Fig. B4 the —1 power law (B8) is valid for
ky < 5.2 while the — 5/3 power law (B7) is valid forky 2 5.2;
moreover

for k«y! (B8)

Gy, =03, C, =09

(These indicated estimates of the coefficients G, and C, and
the boundary between two ranges are preliminary ones and
they must be confirmed by careful measurements.) The esti-
mate of C, permits one to estimate also the Obukhov—Cor-
rsin constant Cy of the equation Egy(k) = CyNe™ k%3

=
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F16. B4. The longitudinal spectrum of temperature fluc-

tuations in the logarithmic sublayer for wave numbers in the

inertial-convective interval according to the data of: 1, ref.
[18]; 2, ref. [23]; 3, ref. [24].

describing the — 5/3 power law for the temperature spectrum.
Since £ = Aui/yand N = au, 1/ in the logarithmic sublayer
where 425 and a=2.12, Cp=C 43 ax=06, if
C; = 0.9. This estimate of Cy agrees satisfactorily with most
of the other estimates of the Obukhov—Corrsin constant
collected in ref. [42].

The data on Eyy(k) permit one also to calculate the spatial
longitudinal correlation function of temperature fluc-
tuations. The —5/3 power law (B7) implies that
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Reolr) = (B(x+r,p,2)  8(x, 3, 2)>[{0> where L =h1 —Gol1.5+7+(3/2) In (Cy/Gy)l/a, ; seeref. [14].
However, the estimate (B10) is rather crude ; a more precise

1 2/3
=1-B4(r})) for y»r»d (B9 result obtained by performing the Fourier transform of the

where 0y = (v*/¢) " is the so-called Kolmogorov microscale spectra Eg(k) consisting of two power ranges has the form

(of dimension of length), B, = 3C,I'(1/3)/4a,, and I" the T~ Ro(r) = Ly~dyIn (r[y) for y<r«<max (4, H)
function (cf. ref. [43]). The — 1 power law (BR) together with (B11)
law (B7) imply that

where dp = Gy/a, ; see ref. [43]. However at present there are
Ry(r) = Ly = const. for y«r«max(§,H) (Bl0) no data to verify the theoretical results (B11).

TRANSFERT DE CHALEUR ET DE MASSE DANS DES COUCHES LIMITES AVEC
GRADIENT DE PRESSION

Résumé—La structure d’un champ scalaire (fempérature ou concentration d’un mélange passif) dans des
couches limites en équilibre et avec gradient longitudinal de pression est étudiée par I'analyse dimensionnelle
pour une région affine nommée “sous-couche a gradient™ (ou la distribution de température moyenne est
décrite par une loi demi-puissance inverse) qui existe 4 la fois dans des écoulements accélérés et décélérés
4 gradient de pression. La loi d’écart de température, de forme spéciale, est valide dans la zone externe des
couches limites a fort gradient. Les données expérimentales disponibles sur les profils de température dans
les écoulements décélérés permettent de déterminer les constantes universelles et les fonctions entrant dans
les relations théoriques et d’obtenir des formules d'interpolation décrivant le champ de température
moyenne dans de telles conditions. En supposant qu'une couche de recouvrement existe ot la loi d’écart
et celle de sous-couche a gradient sont a la fois valides, on peut obtenir la loi universelle de transfert de
chaleur et de masse. Les coefficients numériques de cette loi sont estimés pour les décélérations. Les formes
de quelques caractéristiques statistiques de fluctuation de température sont comparées avec les données
expérimentales disponibles.

WARME- UND STOFFUBERGANG IN GRENZSCHICHTEN MIT EINEM
DRUCKGRADIENTEN

Zusammenfassung—Die Struktur eines Skalarfeldes (Temperatur oder Konzentration eines nicht reagier-
enden Gemisches) in Grenzschichten mit gleitendem Gleichgewicht und mit Druckgradienten in Lings-
richtung wird mit Hilfe der Dimensionsanalyse untersucht. In diesen Grenzschichten existiert ein selbstihn-
liches Gebiet, das als “gradient-sublayer™ bezeichnet wird und dessen mittlere Temperatur dem inversen
Waurzelgesetz gehorcht, und zwar fiir Wandstrdmungen mit positivem und negativen Druckgradienten.
Dariiberhinaus ist das Temperaturfehlergesetz in einer besonderen Form im &uBeren Bereich von Grenz-
schichten mit starken Gradienten giiltig. Die verfiigbaren Versuchsdaten iiber Temperaturprofile in ver-
zbgerten Randstrémungen erlauben es, universelle Konstanten und Funktionen zu bestimmen, welche
in die theoretischen Beziehungen eingehen. Zudem werden Interpolationsformeln zur Beschreibung des
mittleren Temperaturfeldes fiir diese Bedingungen ermittelt. Unter der Annahme, daB eine Uber-
gangsschicht existiert, in der sowohl das Fehlergesetz als auch das “gradient-sublayer”-Gesetz gilt, ergibt
sich ein veraligemeinertes Gesetz fiir die Wirme- und Stoffiibertragung. Die numerischen Koeffizienten fiir
dieses Gesetz werden fiir den Fall einer Strémung mit verzdgerten Druckgradienten bestimmt. Es werden
cinige statistische Eigenschaften der Temperaturfluktuationen (insbesondere die mehrdimensionale
Wahrscheinlichkeitsdichte, die Spektren und Momente) in der “gradient-sublayer”-Schicht mit Hilfe der
Dimensionsanalyse bestimmt und abschlieBend mit verfiigbaren experimentellen Daten verglichen.

TEILJIO- U MACCOIMEPEHOC B 'PAAEHTHOM IMOIPAHUYHOM CJIOE

Anmoramus—C 1OMOUBbIO XOMOHHALIME METOAOB PAa3MEPHOCTH H aCHMITOTHYCCKHX PA3TOKEHHHE Heche-
[IOBAHA CTPYKTYPE OCPEAHEHHOIO CKANAPDHOTO MO (TEMNEPATyPhl MAHM KOHUCHTPAIMM TACCHMBHOM
1pHMECH) B TYPOYNEHTHBIX NOrPAHAYHEIX CIOSX ¢ NPOMONLHBIM I'DANMEHTOM HABJICHHSA, YCKOPAIOLIEM
WM 3aMEUIOLIMM [I0OTOK, B YCIOBHSAX CAOPABEIIMBOCTH FHNOTE3b! JIOKAJILHOH PABHOBECHOCTH TECYCHMA.
Toxaszano, 4YTO HANAYEC JONONHATENBHOIO NAPAMETPa-—MPONONBHOTO TIPaJHCHTA HABJACHHR—
NPHBOAMT K TOABJICHHIO B NOTPaHHYHOM ciioe 06JIaCTH, PacIpENeIeHue TEMIIEPATYPEl B KOTOpOH ONK-
chiBaercs “obpaTHRM 3aKOHOM KBaJpaTHOTO KOPHA”. B COOTBETCTBHM C MPEACKa3aHUAMH TCOPHH 3TOT
33KOH OK43LIBAETCHA CHPABCIUMBBIM XaK [JIA 3aMEUIAIOUIBXCA, Tak H ycKkopsioumxcs norokos. [lpu
3TOM BO BHEWIHEH 30HE NOTPaHHYHOTO CJAOA, PA3BHBAIOHIEroCS B YCIOBHAX CYHIECTBEHHOTO MPONOIh-
goro rpaamenra moGoro 3saxa, cupaseanme cBocoOpasupii 3axoH nedexrta Temnepatypbl. OCHOBBI-
BANCh HA WMEIOMIMXCH IKCNCPUMEHTANBHBIX JAHHBIX O HPOQHAAX TEMIEPATYPH B 3aMEIUISIOLIHXCS
NPUCTEHHEIX TCYEHHUAX YHNACTCH ONPEACHHTD SHAYCHAS YHHBEPCANRHBIX KOHCTAHT H ¢yHKumii, BXoasmHuX
B mONyYeHHbIe OOMIME COOTHOIICHUS, ¥ NMOCTPOHTH HATCPHONALHOHHBIC 3aBHCHMOCTH, MO3BOJIRIOLIMC
HOGHTBCS BONHE YXOBICTBOPHTEALHOrO ONMCAHMN PACHDPCHCHCHHA TEMICPAaTYPhl B ITHX YCIOBHSX.
OCHOBBIBAsICh HAa NPCAIIONOXCHHA O CYIIECTBOBAHHHA 0DIACTH ICPEKPHITAS 3aKOHa eeKTa H FPaJMeHT-
HOTO 3aKOHA PACHPEHENCHHS TeMACPATYpH! {T.. NPEANONaras CymecTBOBaHHe OOMacTH CPAmIMBAHHA
NOIYSCHHBIX aCHMITOTHYCCKHX Pa3/IOXCHHH) MOAYYEH YHMBCPCANLHBIR 3aKOH TEILIOMACCONEPEHOCca B
rpaIMEeHTaHbIX HOTOKAX. Jns cayvas TOPMO3SIIEro I'PAJMCHTA AARJICHHS ONpEeNeHbl SHAYCHAN X0ad-
(MUHEHTOB, BXOJAIIMX B 3TOT 3aKoH. Ha OCHOBaHMM CNENCTBHH H3 aHANM3a PAa3MEPHOCTEH, Kacaiw-
mHxca obwero BHAA MHOIOMEPHOH HIOTHOCTH BEPOATHOCTH 3HAXKCHUH HyNbCAUi TEMIICPaTYpHI,
NPEACKa3aHO ¥ NPOBEPEHO CPABHEHHE C IRCICPHMEHTOM MOBC/ICHHE HEKOTODHIX CTATHCTHMECKHX Xapax-
TCPHCTHK TEMTICPATYPHBIX MyJILCAMHMHA B FPAAHCHTHOM IIOACIIOE.



